Spaces:
Running
on
Zero
Running
on
Zero
from collections import defaultdict | |
import spaces | |
import math | |
import os | |
import gradio as gr | |
import torch | |
import itertools # For color cycling | |
import tiktoken # For GPT-4 tokenizer | |
from transformers import AutoTokenizer, HfArgumentParser # For Llama3 tokenizer & args potentially | |
import traceback # For detailed error logging | |
import logging # For better logging practices | |
from typing import Optional, Tuple, List, Dict, Any | |
import matplotlib.figure # For type hinting | |
import matplotlib.pyplot as plt | |
# --- Configuration --- | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
class Config: | |
# Visualization | |
VIZ_COLORS: List[str] = [ | |
"#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c", | |
"#fdbf6f", "#ff7f00", "#cab2d6", "#6a3d9a", "#ffff99", "#b15928" | |
] | |
MAX_EXPECTED_SEGMENTS: int = 1 # Max segments for color map generation | |
# Model/Tokenizer Names | |
LLAMA3_MODEL_NAME: str = "meta-llama/Meta-Llama-3-8B" # Or choose another variant like Instruct | |
TIKTOKEN_ENCODING_NAME: str = "cl100k_base" | |
BLT_MODEL_NAME: str = "blt-1b" # Default Bytelatent model | |
# Bytelatent Specific | |
BLT_WEIGHTS_DIR: str = "hf-weights" | |
BLT_MAX_BYTES_FOR_DEMO: int = 512 | |
# Gradio | |
DEFAULT_PROMPT: str = "Daenerys Targaryen is in Game of Thrones, a fantasy epic by George R.R. Martin." | |
GRADIO_THEME = gr.themes.Origin() | |
GRADIO_TITLE: str = "BLT's Entropy-based Patcher vs. Tokenizer Visualisation" | |
GRADIO_DESC: str = ( | |
"Enter text to visualize its segmentation according to different methods:\n" | |
f"1. **Byte Latent Transformer (BLT):** Entropy-based patching plot and patched text (using `blt_main_entropy_100m_512w`).\n" | |
f"2. **Tiktoken (GPT-4):** Text segmented by `{TIKTOKEN_ENCODING_NAME}` tokens.\n" | |
f"3. **Llama 3:** Text segmented by the `{LLAMA3_MODEL_NAME}` tokenizer." | |
) | |
# --- Bytelatent Processor --- | |
# Attempt to import Bytelatent libraries | |
try: | |
from bytelatent.data.file_util import get_fs | |
from bytelatent.generate_patcher import patcher_nocache | |
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer | |
from bytelatent.plotting.entropy_figure_via_matplot_lib import plot_entropies | |
from bytelatent.args import TrainArgs | |
from download_blt_weights import main as ensure_present # Assuming this downloads weights | |
_BLT_AVAILABLE = True | |
logging.info("Bytelatent libraries found.") | |
except ImportError as e: | |
logging.warning(f"Bytelatent libraries not found. Bytelatent functionality will be disabled. Error: {e}") | |
_BLT_AVAILABLE = False | |
# Define dummy classes/functions if BLT is not available to avoid NameErrors later | |
class BltTokenizer: pass | |
class TrainArgs: pass | |
def patcher_nocache(*args, **kwargs): return None | |
def plot_entropies(*args, **kwargs): return None | |
def ensure_present(*args, **kwargs): pass | |
matplotlib = None # No plotting if BLT isn't there | |
class BytelatentProcessor: | |
"""Handles loading and running the Bytelatent entropy model.""" | |
def __init__(self, model_name: str, weights_dir: str): | |
self.model_name = model_name | |
self.weights_dir = weights_dir | |
self.is_available: bool = False | |
self.tokenizer: Optional[BltTokenizer] = None | |
self.patcher: Optional[Any] = None # Type depends on bytelatent implementation | |
self.device: str = "cuda" if torch.cuda.is_available() else "cpu" | |
if _BLT_AVAILABLE: | |
try: | |
# 1. Ensure weights are present | |
logging.info(f"Ensuring Bytelatent model '{model_name}' weights are present...") | |
ensure_present([model_name]) # Call the download script | |
logging.info("Bytelatent model check complete.") | |
# 2. Load Bytelatent model components | |
consolidated_path = os.path.join(self.weights_dir, model_name) | |
train_args_path = os.path.join(consolidated_path, "train_args.json") | |
entropy_model_dir = os.path.join(consolidated_path, "entropy_model") | |
if not os.path.exists(train_args_path): | |
raise FileNotFoundError(f"BLT training args not found at {train_args_path}.") | |
if not os.path.exists(entropy_model_dir): | |
raise FileNotFoundError(f"BLT Entropy model directory not found at {entropy_model_dir}.") | |
fs = get_fs(train_args_path) | |
train_args = TrainArgs.model_validate_json(fs.read_text(train_args_path)) | |
self.tokenizer = train_args.data.tokenizer_args.build() | |
assert isinstance(self.tokenizer, BltTokenizer), "Failed to build Bytelatent Tokenizer" | |
patcher_args = train_args.data.patcher_args.model_copy(deep=True) | |
patcher_args.realtime_patching = True | |
patcher_args.patching_device = self.device | |
patcher_args.device = self.device | |
patcher_args.entropy_model_checkpoint_dir = entropy_model_dir | |
self.patcher = patcher_args.build() | |
self.is_available = True | |
logging.info(f"Bytelatent processor for '{model_name}' loaded successfully on device '{self.device}'.") | |
except FileNotFoundError as e: | |
logging.error(f"Bytelatent setup failed: Required file/directory not found. {e}") | |
except Exception as e: | |
logging.error(f"An unexpected error occurred during Bytelatent setup: {e}") | |
logging.error(traceback.format_exc()) | |
else: | |
logging.warning("Skipping Bytelatent setup as libraries are unavailable.") | |
def _create_highlight_data(self, patch_lengths: torch.Tensor, tokens: torch.Tensor) -> Tuple[List[Tuple[str, str]], int]: | |
"""Generates data for gr.HighlightedText based on bytelatent patches, | |
formatting each byte's display text as 'char-byte_index'.""" | |
if not self.is_available or self.tokenizer is None: | |
return [("Bytelatent processing unavailable.", "Error")], 0 | |
if patch_lengths.numel() == 0 and tokens.numel() == 0: # No data at all | |
return [("No tokens or patches.", "Info")], 0 | |
if tokens.numel() == 0: # No tokens to process | |
# Count patches even if no tokens, as per original logic for patch_count | |
actual_patch_count = 0 | |
for length in patch_lengths.tolist(): | |
if length > 0: | |
actual_patch_count +=1 | |
return [("No tokens provided to highlight.", "Info")], actual_patch_count | |
patch_lengths_list = patch_lengths.tolist() | |
all_token_ids = tokens.tolist() # These are byte representations (integer IDs) | |
highlighted_data: List[Tuple[str, str]] = [] | |
# Calculate original patch count (number of non-empty patches) | |
actual_patch_count = 0 | |
for length in patch_lengths_list: | |
if length > 0: | |
actual_patch_count +=1 | |
# Create a map from global token index to its patch label | |
token_to_patch_label = [""] * len(all_token_ids) | |
current_token_processed_for_patches = 0 | |
patch_idx_counter = 0 | |
for length in patch_lengths_list: | |
if length <= 0: | |
continue | |
patch_label = f"BL Patch {patch_idx_counter + 1}" | |
patch_idx_counter += 1 | |
for _ in range(length): | |
if current_token_processed_for_patches < len(all_token_ids): | |
token_to_patch_label[current_token_processed_for_patches] = patch_label | |
current_token_processed_for_patches += 1 | |
# Handle remainder tokens label | |
if current_token_processed_for_patches < len(all_token_ids): | |
remainder_label = "BL Remainder" | |
logging.warning( | |
f"Bytelatent patch lengths sum ({current_token_processed_for_patches}) " | |
f"is less than total tokens ({len(all_token_ids)}). " | |
f"Remainder tokens will be labelled '{remainder_label}'." | |
) | |
for k in range(current_token_processed_for_patches, len(all_token_ids)): | |
token_to_patch_label[k] = remainder_label | |
elif current_token_processed_for_patches > len(all_token_ids) and len(all_token_ids) > 0 : | |
logging.warning( | |
f"Bytelatent patch lengths sum ({current_token_processed_for_patches}) " | |
f"exceeds total tokens ({len(all_token_ids)}). " | |
f"Patch label mapping might be affected." | |
) | |
global_token_idx = 0 | |
while global_token_idx < len(all_token_ids): | |
char_representation = "" | |
decoded_byte_ids: List[int] = [] | |
# Handle the special case for token ID 1, often representing '<' or similar | |
# This assumes token ID 1 should always be treated as a single character '<'. | |
# Adjust if your tokenizer handles ID 1 differently or if it can be part of a multi-byte sequence. | |
if all_token_ids[global_token_idx] == 1: | |
char_representation = "<" # As per user's original code snippet's implication | |
decoded_byte_ids = [1] | |
else: | |
# Iteratively try to decode a character (1 to 4 bytes for UTF-8) | |
for length_to_try in range(1, 5): | |
if global_token_idx + length_to_try > len(all_token_ids): | |
break # Not enough tokens left for this length | |
current_ids_to_try = all_token_ids[global_token_idx : global_token_idx + length_to_try] | |
try: | |
temp_decode_text = self.tokenizer.decode(current_ids_to_try) | |
if temp_decode_text: # Successfully decoded something | |
# This means `current_ids_to_try` forms a valid character(s). | |
# We take the first successful decode, assuming it's the shortest complete char. | |
char_representation = temp_decode_text | |
decoded_byte_ids = current_ids_to_try | |
break # Found a character | |
except Exception as e: | |
# Decoding failed (e.g., incomplete sequence for this length_to_try). | |
# Log this if it's unexpected for a particular tokenizer. | |
# logging.debug(f"Decode attempt failed for {current_ids_to_try}: {e}") | |
pass # Continue to try with more bytes. | |
# After trying to decode: | |
if char_representation and decoded_byte_ids: | |
num_bytes_in_char = len(decoded_byte_ids) | |
# Ensure char_representation is treated as a single conceptual unit here. | |
# If tokenizer.decode can return multiple characters for a short byte sequence, | |
# this might need adjustment. For UTF-8, one char is expected. | |
processed_char_text = char_representation.splitlines()[0] # Take first char if multiple, or clean up | |
for j in range(num_bytes_in_char): | |
current_byte_abs_idx = global_token_idx + j | |
# Boundary check, though loop structure should prevent out-of-bounds | |
if current_byte_abs_idx < len(all_token_ids): | |
label = token_to_patch_label[current_byte_abs_idx] if current_byte_abs_idx < len(token_to_patch_label) else "Error: Label Missing" | |
display_text = f"{processed_char_text}-{j+1}".replace(" ", "_") | |
highlighted_data.append((display_text, label)) | |
else: # Should ideally not be reached | |
logging.error(f"Critical: Token index {current_byte_abs_idx} out of bounds for labeling.") | |
global_token_idx += num_bytes_in_char | |
else: | |
# Fallback: Could not form a character starting at global_token_idx. | |
# Treat the current byte as a standalone problematic byte. | |
current_byte_abs_idx = global_token_idx | |
label = token_to_patch_label[current_byte_abs_idx] if current_byte_abs_idx < len(token_to_patch_label) else "Error: Label Missing" | |
problem_byte_id = all_token_ids[current_byte_abs_idx] | |
display_text = f"err_byte({problem_byte_id})-1" | |
# Attempt to get a direct representation if tokenizer can provide one for the single byte | |
try: | |
single_byte_char_attempt = self.tokenizer.decode([problem_byte_id]) | |
if single_byte_char_attempt and single_byte_char_attempt != "\ufffd": # Replacement char | |
display_text = f"{single_byte_char_attempt}-1" | |
except Exception: | |
pass # Stick with the err_byte display_text | |
highlighted_data.append((display_text.replace(" ", "_"), label)) | |
logging.warning( | |
f"Token ID {problem_byte_id} at index {current_byte_abs_idx} " | |
f"could not be part of a validly decoded character using iterative decode. Fallback: '{display_text}'." | |
) | |
global_token_idx += 1 | |
return highlighted_data, actual_patch_count | |
def process(self, prompt: str, max_bytes: float) -> Tuple[Optional[matplotlib.figure.Figure], List[Tuple[str, str]], int, str]: | |
"""Processes the prompt using the loaded Bytelatent model.""" | |
status = "" | |
if not self.is_available or self.tokenizer is None or self.patcher is None: | |
status = "Bytelatent processor not available." | |
return None, [("Bytelatent not available.", "Error")], 0, status | |
# Truncate prompt if necessary for this demo's model | |
prompt_bytes = prompt.encode('utf-8') | |
prompt_bl = prompt | |
if len(prompt_bytes) > max_bytes: | |
try: | |
# Find last full character within limit (simple space split fallback) | |
try: | |
prompt_bl = prompt_bytes[:max_bytes].decode('utf-8', errors='strict') | |
# If successful, find last space to avoid cutting mid-word visually | |
last_space = prompt_bl.rfind(' ') | |
if last_space != -1: | |
prompt_bl = prompt_bl[:last_space] | |
except UnicodeDecodeError: | |
# If strict fails, find last valid byte sequence start before max_bytes | |
i = max_bytes | |
while i > 0: | |
try: | |
prompt_bytes[:i].decode('utf-8', errors='strict') | |
break # Found valid end point | |
except UnicodeDecodeError: | |
i -= 1 | |
prompt_bl = prompt_bytes[:i].decode('utf-8', errors='ignore') # Decode ignoring errors now | |
trunc_len = len(prompt_bl.encode('utf-8')) | |
status = f"Warning: Prompt truncated to {trunc_len} bytes for Bytelatent entropy model.\n" | |
logging.warning(status.strip()) | |
except Exception as trunc_err: | |
# Fallback if complex truncation fails | |
prompt_bl = prompt_bytes[:max_bytes].decode('utf-8', errors='ignore') | |
trunc_len = len(prompt_bl.encode('utf-8')) | |
status = f"Warning: Prompt aggressively truncated to ~{trunc_len} bytes due to encoding issue. Error: {trunc_err}\n" | |
logging.warning(status.strip()) | |
# Run Bytelatent patching | |
try: | |
logging.info(f"Running Bytelatent entropy model patching on {len(prompt_bl.encode('utf-8'))} bytes...") | |
results = patcher_nocache( | |
[prompt_bl], | |
tokenizer=self.tokenizer, | |
patcher=self.patcher, | |
max_prompt_len=512, | |
max_gen_len=256, | |
) | |
status += "Bytelatent patching executed.\n" | |
if not results: | |
logging.warning("Bytelatent entropy processing returned no results.") | |
status += "Warning: Bytelatent generated no patches." | |
return None, [("No patches generated by Bytelatent.", "Info")], 0, status | |
batch_patch_lengths, batch_scores, batch_tokens = results | |
patch_lengths, scores, tokens = batch_patch_lengths[0], batch_scores[0], batch_tokens[0] | |
# Create highlighted text data | |
_highlighted_data, patch_count = self._create_highlight_data(patch_lengths, tokens) | |
ind_highlighted_data = [(text.replace("-1", ""), label) for text, label in _highlighted_data] | |
grouped_data = defaultdict(str) | |
for text, label in ind_highlighted_data: | |
grouped_data[label] += text | |
highlighted_data = [(text, label) for label, text in grouped_data.items()] | |
# Create plot | |
fig = None | |
if plot_entropies is not None: # Check if plotting function is available | |
try: | |
# Use the potentially truncated prompt_bl for the plot text axis if full decode fails | |
decoded_output_for_plot = self.tokenizer.decode(tokens.tolist()) | |
except Exception as decode_err: | |
logging.warning(f"Error decoding full BLT token sequence for plot: {decode_err}. Using (truncated) input prompt for plot axis.") | |
decoded_output_for_plot = prompt_bl | |
# fig = plot_entropies(patch_lengths, scores, decoded_output_for_plot, threshold=self.patcher.threshold) | |
fig = plot_entropies( | |
patch_lengths, | |
scores, | |
tokens, | |
chars=decoded_output_for_plot, | |
threshold=self.patcher.threshold | |
) | |
status += f"Bytelatent plot generated. Found {patch_count} patches.\n" | |
else: | |
status += "Plotting unavailable.\n" | |
logging.info(f"Bytelatent processing complete. Patches: {patch_count}") | |
return fig, highlighted_data, patch_count, status.strip() | |
except Exception as e: | |
logging.error(f"An error occurred during Bytelatent processing: {e}") | |
logging.error(traceback.format_exc()) | |
status += f"Error during Bytelatent processing: {e}" | |
return None, [(f"Bytelatent Error: {e}", "Error")], 0, status.strip() | |
# --- Tokenizer Helpers --- | |
def create_tiktoken_highlight_data(prompt: str, encoding: tiktoken.Encoding) -> Tuple[List[Tuple[str, str]], int, str]: | |
"""Generates data for gr.HighlightedText based on tiktoken.""" | |
status = "Processing with Tiktoken...\n" | |
try: | |
tiktoken_ids = encoding.encode(prompt) | |
highlighted_data = [] | |
for i, token_id in enumerate(tiktoken_ids): | |
try: | |
token_text = encoding.decode([token_id]) | |
except (UnicodeDecodeError, TypeError): # Handle bytes that don't form valid unicode | |
try: | |
token_bytes = encoding.decode_single_token_bytes(token_id) | |
token_text = f"[Bytes: {token_bytes.hex()}]" | |
except Exception: token_text = "[Decode Error]" | |
except Exception as e: | |
logging.warning(f"Unexpected tiktoken decode error for token ID {token_id}: {e}") | |
token_text = "[Decode Error]" | |
token_label = f"GPT4 Tk {i+1}" | |
highlighted_data.append((token_text, token_label)) | |
token_count = len(tiktoken_ids) | |
status += f"Tiktoken processing successful ({token_count} tokens)." | |
logging.info(f"Tiktoken processing complete. Found {token_count} tokens.") | |
return highlighted_data, token_count, status.strip() | |
except Exception as e: | |
logging.error(f"Error during tiktoken processing: {e}") | |
logging.error(traceback.format_exc()) | |
status += f"Error during Tiktoken processing: {e}" | |
return [(f"Error processing with tiktoken: {e}", "Error")], 0, status.strip() | |
def create_llama3_highlight_data(prompt: str, tokenizer: AutoTokenizer) -> Tuple[List[Tuple[str, str]], int, str]: | |
"""Generates data for gr.HighlightedText based on Llama 3 tokenizer.""" | |
status = f"Processing with Llama 3 ({tokenizer.name_or_path})...\n" | |
try: | |
llama_token_ids = tokenizer.encode(prompt) | |
highlighted_data = [] | |
for i, token_id in enumerate(llama_token_ids): | |
try: | |
# Decode individual token. Add special handling if needed for specific tokenizers. | |
token_text = tokenizer.decode([token_id]) | |
except Exception as e: | |
logging.warning(f"Unexpected Llama 3 decode error for token ID {token_id}: {e}") | |
token_text = "[Decode Error]" | |
token_label = f"Llama3 Tk {i+1}" | |
highlighted_data.append((token_text, token_label)) | |
token_count = len(llama_token_ids) | |
status += f"Llama 3 processing successful ({token_count} tokens)." | |
logging.info(f"Llama 3 processing complete. Found {token_count} tokens.") | |
return highlighted_data, token_count, status.strip() | |
except Exception as e: | |
logging.error(f"Error during Llama 3 processing: {e}") | |
logging.error(traceback.format_exc()) | |
status += f"Error during Llama 3 processing: {e}" | |
return [(f"Error processing with Llama 3: {e}", "Error")], 0, status.strip() | |
# --- Global Initializations --- | |
# Initialize Bytelatent Processor (loads model if available) | |
blt_processor = BytelatentProcessor(Config.BLT_MODEL_NAME, Config.BLT_WEIGHTS_DIR) | |
# Load Tiktoken Encoding | |
try: | |
tiktoken_encoding = tiktoken.get_encoding(Config.TIKTOKEN_ENCODING_NAME) | |
logging.info(f"Tiktoken encoding '{Config.TIKTOKEN_ENCODING_NAME}' loaded.") | |
tiktoken_available = True | |
except Exception as e: | |
logging.error(f"Failed to load Tiktoken encoding '{Config.TIKTOKEN_ENCODING_NAME}': {e}") | |
tiktoken_encoding = None | |
tiktoken_available = False | |
# Load Llama 3 Tokenizer | |
try: | |
# Use trust_remote_code=True if required by the specific model revision | |
llama_tokenizer = AutoTokenizer.from_pretrained(Config.LLAMA3_MODEL_NAME) #, trust_remote_code=True) | |
logging.info(f"Llama 3 tokenizer '{Config.LLAMA3_MODEL_NAME}' loaded.") | |
llama_available = True | |
except ImportError: | |
logging.error("Transformers or SentencePiece library not found. Llama 3 functionality disabled. Install with: pip install transformers sentencepiece") | |
llama_tokenizer = None | |
llama_available = False | |
except OSError as e: | |
logging.error(f"Error loading Llama 3 tokenizer '{Config.LLAMA3_MODEL_NAME}': {e}") | |
error_msg = f"Could not load Llama 3 tokenizer '{Config.LLAMA3_MODEL_NAME}'. Check model name, network, and authentication (use `huggingface-cli login` if needed)." | |
logging.error(error_msg) | |
llama_tokenizer = None | |
llama_available = False | |
except Exception as e: | |
logging.error(f"An unexpected error occurred loading Llama 3 tokenizer: {e}") | |
logging.error(traceback.format_exc()) | |
llama_tokenizer = None | |
llama_available = False | |
# --- Main Processing Function --- | |
def process_text(prompt: str) -> Tuple[ | |
Optional[matplotlib.figure.Figure], List[Tuple[str, str]], int, # BLT | |
List[Tuple[str, str]], int, # Tiktoken | |
List[Tuple[str, str]], int, # Llama 3 | |
str # Status | |
]: | |
""" | |
Processes the input prompt using ByteLatent, Tiktoken, and Llama 3, | |
returning visualizations, counts, and status. | |
""" | |
status_messages = ["Processing started..."] | |
fig = None | |
bl_highlighted_data, bl_count = [("Bytelatent not available.", "Error")], 0 | |
tk_highlighted_data, tk_count = [("Tiktoken not available.", "Error")], 0 | |
llama_highlighted_data, llama_count = [("Llama 3 not available.", "Error")], 0 | |
# 1. Bytelatent Processing | |
if blt_processor.is_available: | |
fig, bl_highlighted_data, bl_count, bl_status = blt_processor.process(prompt, Config.BLT_MAX_BYTES_FOR_DEMO) | |
status_messages.append(f"Bytelatent Status:\n{bl_status}") | |
else: | |
status_messages.append("Bytelatent Status: Skipped (processor unavailable).") | |
# 2. Tiktoken Processing | |
if tiktoken_available and tiktoken_encoding: | |
tk_highlighted_data, tk_count, tk_status = create_tiktoken_highlight_data(prompt, tiktoken_encoding) | |
status_messages.append(f"Tiktoken Status:\n{tk_status}") | |
else: | |
status_messages.append("Tiktoken Status: Skipped (tokenizer unavailable).") | |
# 3. Llama 3 Processing | |
if llama_available and llama_tokenizer: | |
llama_highlighted_data, llama_count, llama_status = create_llama3_highlight_data(prompt, llama_tokenizer) | |
status_messages.append(f"Llama 3 Status:\n{llama_status}") | |
else: | |
status_messages.append("Llama 3 Status: Skipped (tokenizer unavailable).") | |
final_status = "\n---\n".join(status_messages) | |
if fig is not None and matplotlib is not None: | |
try: | |
plt.close(fig) # Close the specific figure | |
logging.debug("Closed Matplotlib figure.") | |
except Exception as close_err: | |
logging.warning(f"Could not close Matplotlib figure: {close_err}") | |
return fig, bl_highlighted_data, bl_count, tk_highlighted_data, tk_count, llama_highlighted_data, llama_count, final_status | |
# --- Gradio Interface --- | |
def create_color_map(label_prefix: str, colors: List[str], max_segments: int) -> Dict[str, str]: | |
"""Generates a color map dictionary for Gradio HighlightedText.""" | |
color_cycler = itertools.cycle(colors) | |
color_map = {f"{label_prefix} {i+1}": next(color_cycler) for i in range(max_segments)} | |
color_map.update({"Error": "#FF0000", "Info": "#808080", "BL Remainder": "#AAAAAA"}) # Common labels | |
return color_map | |
bytelatent_color_map = create_color_map("BL Patch", Config.VIZ_COLORS, Config.MAX_EXPECTED_SEGMENTS) | |
tiktoken_color_map = create_color_map("GPT4 Tk", Config.VIZ_COLORS, Config.MAX_EXPECTED_SEGMENTS) | |
llama3_color_map = create_color_map("Llama3 Tk", Config.VIZ_COLORS, Config.MAX_EXPECTED_SEGMENTS) | |
with gr.Blocks(theme=Config.GRADIO_THEME) as iface: | |
gr.Markdown(f"# {Config.GRADIO_TITLE}") | |
gr.Markdown(Config.GRADIO_DESC) | |
with gr.Row(): | |
with gr.Column(scale=1): # Input Column | |
prompt_input = gr.Textbox( | |
label="Input Prompt", | |
value=Config.DEFAULT_PROMPT, | |
placeholder="Enter text here...", | |
# Max length is for UI input; Bytelatent truncation happens in backend | |
lines=5, | |
info=f"Note: Entropy-based Patcher processing is limited to {Config.BLT_MAX_BYTES_FOR_DEMO} bytes for this demo." | |
) | |
submit_button = gr.Button("Generate Visualizations", variant="primary") | |
status_output = gr.Textbox(label="Processing Status", interactive=False, lines=10) # More space for detailed status | |
with gr.Column(scale=2): # Output Column | |
# --- Bytelatent Output Area --- | |
if blt_processor.is_available: # Only show BLT section if it loaded | |
with gr.Accordion("BLT Entropy Patcher Output (`blt_main_entropy_100m_512w`)", open=True): | |
with gr.Row(): | |
bl_count_output = gr.Number(label="Patch Count", value=0, interactive=False, step=1, scale=0) | |
highlighted_output_bl = gr.HighlightedText( | |
label="BLT Patches", | |
color_map=bytelatent_color_map, | |
show_legend=False, | |
show_inline_category=False, | |
container=False | |
) | |
plot_output = gr.Plot(label="Entropy vs. Token Index") | |
else: | |
gr.Markdown(f"### Bytelatent Output (`{Config.BLT_MODEL_NAME}`)") | |
gr.Markdown("_(Bytelatent processor failed to load or libraries are missing. Output unavailable.)_") | |
# Define dummy outputs if BLT is unavailable so the `outputs` list doesn't break | |
highlighted_output_bl = gr.HighlightedText(value=[("BLT Unavailable", "Error")], label="BLT Patches", visible=False) | |
bl_count_output = gr.Number(value=0, label="Patch Count", visible=False) | |
plot_output = gr.Plot(label="Entropy Plot", visible=False) | |
# --- Tiktoken Output Area --- | |
if tiktoken_available: # Only show Tiktoken section if it loaded | |
with gr.Accordion(f"Tiktoken Output (`{Config.TIKTOKEN_ENCODING_NAME}`)", open=True): | |
with gr.Row(): | |
tk_count_output = gr.Number(label="Token Count", value=0, interactive=False, step=1, scale=0) | |
highlighted_output_tk = gr.HighlightedText( | |
label="Tiktoken Segments", | |
color_map=tiktoken_color_map, | |
show_legend=False, | |
show_inline_category=False, | |
container=False | |
) | |
else: | |
gr.Markdown(f"### Tiktoken Output (`{Config.TIKTOKEN_ENCODING_NAME}`)") | |
gr.Markdown("_(Tiktoken failed to load. Output unavailable.)_") | |
highlighted_output_tk = gr.HighlightedText(value=[("Tiktoken Unavailable", "Error")], label="Tiktoken Segments", visible=False) | |
tk_count_output = gr.Number(value=0, label="Token Count", visible=False) | |
# --- Llama 3 Output Area --- | |
if llama_available: # Only show Llama section if it loaded | |
with gr.Accordion(f"Llama 3 Output (`{Config.LLAMA3_MODEL_NAME}`)", open=True): | |
with gr.Row(): | |
llama_count_output = gr.Number(label="Token Count", value=0, interactive=False, step=1, scale=0) | |
highlighted_output_llama = gr.HighlightedText( | |
label="Llama 3 Segments", | |
color_map=llama3_color_map, | |
show_legend=False, | |
show_inline_category=False, | |
container=False | |
) | |
else: | |
gr.Markdown(f"### Llama 3 Output (`{Config.LLAMA3_MODEL_NAME}`)") | |
gr.Markdown("_(Llama 3 tokenizer failed to load. Output unavailable.)_") | |
highlighted_output_llama = gr.HighlightedText(value=[("Llama 3 Unavailable", "Error")], label="Llama 3 Segments", visible=False) | |
llama_count_output = gr.Number(value=0, label="Token Count", visible=False) | |
# Define the action for the button click | |
submit_button.click( | |
fn=process_text, | |
inputs=prompt_input, | |
# Ensure order matches the return values of process_text | |
outputs=[ | |
# Bytelatent outputs (even if dummy/hidden) | |
plot_output, | |
highlighted_output_bl, | |
bl_count_output, | |
# Tiktoken outputs (even if dummy/hidden) | |
highlighted_output_tk, | |
tk_count_output, | |
# Llama 3 outputs (even if dummy/hidden) | |
highlighted_output_llama, | |
llama_count_output, | |
# Status output | |
status_output | |
] | |
) | |
# --- Launch the Gradio App --- | |
if __name__ == "__main__": | |
logging.info("-----------------------------------------") | |
logging.info("Starting Gradio App...") | |
logging.info(f"Bytelatent Available: {blt_processor.is_available}") | |
logging.info(f"Tiktoken Available: {tiktoken_available}") | |
logging.info(f"Llama 3 Tokenizer Available: {llama_available}") | |
logging.info("-----------------------------------------") | |
iface.launch() | |