File size: 23,364 Bytes
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7044771
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.

import gc
import logging
import os
import sys
from contextlib import ExitStack
from copy import deepcopy
from dataclasses import asdict, dataclass, field
from pathlib import Path
from timeit import default_timer as timer
from typing import Any, Dict, Optional

import torch
import torch.distributed
import wandb
import xformers.profiler
from lingua.args import dataclass_from_dict, dump_config, flatten_dict
from lingua.data import (
    DataArgs,
    PackTokensState,
    build_dataloader_from_args,
    init_dataloader_state_from_args,
)
from lingua.tokenizers.build_tokenizer import TokenizerArgs
from omegaconf import OmegaConf
from pydantic import BaseModel
from torch.distributed._tensor import DTensor
from torch.distributed.checkpoint.stateful import Stateful
from torch.optim import lr_scheduler

from bytelatent.checkpoint import (
    CheckpointArgs,
    CheckpointManager,
    load_from_checkpoint,
)
from bytelatent.distributed import (
    DistributedArgs,
    EnvironmentArgs,
    check_model_value_range,
    clean_env,
    dist_mean_dict,
    get_device_mesh,
    get_is_master,
    get_world_size,
    init_signal_handler,
    parallelize_model,
    requeue_slurm_job,
    setup_env,
    setup_torch_distributed,
)
from bytelatent.logger import init_logger
from bytelatent.metrics import (
    GPUMemoryMonitor,
    LoggingArgs,
    MetricLogger,
    get_num_params,
)
from bytelatent.optim import OptimArgs, build_optimizer
from bytelatent.probe import AutoProbeD
from bytelatent.profiling import ProfilerArgs, maybe_run_profiler
from bytelatent.stool import StoolArgs, launch_job
from bytelatent.transformer import (
    LMTransformer,
    LMTransformerArgs,
    build_fsdp_grouping_plan,
    get_no_recompute_ops,
    get_num_flop_per_token,
    tp_parallelize,
)

logger = logging.getLogger()


class TrainArgs(BaseModel):
    name: str = "lingua"
    dump_dir: str = ""

    seed: int = 42

    # Number of gradient accumulation steps
    # Total batch size is batch_size*grad_acc_steps
    grad_acc_steps: int = 1

    gc_collect_freq: int = 1000
    probe_freq: int | None = None

    # Nb optimizer steps to take
    steps: int = 1000

    data: DataArgs
    optim: OptimArgs
    model: LMTransformerArgs
    distributed: DistributedArgs
    env: EnvironmentArgs

    checkpoint: CheckpointArgs
    profiling: ProfilerArgs
    logging: LoggingArgs

    # If set to None, eval is run locally otherwise it launches a new job with the given number of gpus
    async_eval_gpus: int | None = None
    eval: Any | None = None


@dataclass
class TrainState(Stateful):
    step: int  # Nb of steps taken by the optimizer
    acc_step: int  # Nb of accumulation steps done since last optimizer step
    scheduler: lr_scheduler.LambdaLR
    data_loader_state: PackTokensState

    def state_dict(self) -> Dict[str, Any]:
        return {
            "step": self.step,
            "acc_step": self.acc_step,
            "data_loader_state": self.data_loader_state,
            "scheduler": self.scheduler.state_dict(),
        }

    def load_state_dict(self, state_dict):
        self.step = state_dict["step"]
        self.acc_step = state_dict["acc_step"]
        self.data_loader_state = PackTokensState(**state_dict["data_loader_state"])
        self.scheduler.load_state_dict(state_dict["scheduler"])


def validate_train_args(args: TrainArgs, output_size: int):
    if args.model.vocab_size < 0:
        logger.info(f"Setting model output size to {args.model.vocab_size}")
        args.model.vocab_size = output_size
    assert (
        args.model.vocab_size == output_size
    ), "Vocab size should be the same as output size"

    assert args.dump_dir, "Dump dir not set"

    if args.checkpoint.path is None:
        logger.info(f"Setting checkpoint path to {args.checkpoint.path}")
        args.checkpoint.path = str(Path(args.dump_dir) / "checkpoints")

    for source in args.data.sources:
        data_path = os.path.join(args.data.root_dir, source)
        assert os.path.exists(data_path), f"{data_path} doesn't exist"

    if (
        args.distributed.dp_replicate
        * args.distributed.dp_shard
        * args.distributed.tp_size
        != get_world_size()
    ):
        assert get_world_size() % args.distributed.dp_shard == 0
        args.distributed.dp_replicate = get_world_size() // args.distributed.dp_shard

        assert args.distributed.dp_replicate % args.distributed.tp_size == 0
        args.distributed.dp_replicate = (
            args.distributed.dp_replicate // args.distributed.tp_size
        )

        logger.warning(
            f"Setting Data Parallel size to {args.distributed.dp_replicate * args.distributed.dp_shard}"
        )
        assert (
            args.distributed.dp_replicate
            * args.distributed.dp_shard
            * args.distributed.tp_size
            == get_world_size()
        )

        if args.distributed.fsdp_type == "no_shard":
            assert (
                args.distributed.dp_shard == 1
                and args.distributed.dp_replicate == get_world_size()
            )

    args.model.max_seqlen = args.data.seq_len

    if args.distributed.tp_size == 1:
        logger.warning(
            "Tensor parallelism has not been tested for a while, use at your own risk"
        )

    assert (
        args.probe_freq != args.profiling.mem_steps
    ), "Don't profile during probe step"
    assert (
        args.probe_freq != args.profiling.profile_steps
    ), "Don't profile during probe step"
    if args.logging.wandb is not None:
        args.logging.wandb.name = args.name

    if args.probe_freq is not None:
        assert (
            args.distributed.tp_size == 1
        ), "Probing not supported with tensor parallelism"
        assert (
            args.distributed.selective_activation_checkpointing is False
        ), "Probing not supported with selective activation checkpointing"


preemption_flag = dict(flag=False)


def set_preemption_flag(signum, frame):
    logger.warning("Signal handler called with signal " + str(signum))
    logger.warning("Preemption ! checkpointing asap and exiting.")
    preemption_flag["flag"] = True


def every_n_steps(train_state, freq, acc_step=None, acc_freq=None):
    test = train_state.step % freq == 0
    if acc_step is not None:
        test = test and (train_state.acc_step == acc_step)
    elif acc_freq is not None:
        test = test and ((train_state.acc_step % acc_freq) == 0)
    return test


def train(args: TrainArgs):
    with ExitStack() as context_stack:
        tokenizer_args = TokenizerArgs(
            name=args.data.name,
            init_kwargs=args.data.tokenizer.init_kwargs,
        )
        tokenizer = tokenizer_args.build()
        validate_train_args(
            args,
            tokenizer.n_words,
        )
        if get_is_master():
            os.makedirs(args.dump_dir, exist_ok=True)
            dump_config(args, Path(args.dump_dir) / "config.yaml")
        init_logger(Path(args.dump_dir) / "train.log")
        init_signal_handler(set_preemption_flag)  # For handling preemption signals.
        setup_env(args.env)
        setup_torch_distributed(args.distributed)
        world_mesh = get_device_mesh(args.distributed)
        logger.info(f"Starting job: {args.name}")

        # build dataloader
        # need dp world size and rank
        dp_mesh = world_mesh["dp_replicate"]
        dp_degree = dp_mesh.size()
        dp_rank = dp_mesh.get_local_rank()
        if args.distributed.dp_shard > 1:
            dp_rank = dp_rank * dp_degree + world_mesh["dp_shard"].get_local_rank()
            dp_degree *= world_mesh["dp_shard"].size()

        logger.info(f"Running on dp rank : {dp_rank}")
        logger.info(f"Running on dp size : {dp_degree}")

        torch.manual_seed(args.seed)
        logger.info("Building model")

        # Initializing Model in meta device allows us to initialize models much bigger than 1 gpu's memory
        with torch.device("meta"):
            model = LMTransformer(args.model)
        logger.info("Model is built !")

        model_param_count = get_num_params(model)

        model = parallelize_model(
            model,
            world_mesh,
            args.model,
            args.distributed,
            fsdp_grouping_plan=build_fsdp_grouping_plan(args.model),
            tp_parallelize=tp_parallelize,
            no_recompute_ops=get_no_recompute_ops(),
        )

        # Once we shard the model on different gpus we can actually initialize the model
        # First we create empty tensors of the correct shapes
        model = model.to_empty(device="cuda")
        # Then we init the model. Please make sure this function initializes *ALL* parameters
        # and buffers, otherwise you will have random values in the unitialized tensors
        # which will silently fail (give nan gradients for example)

        if args.checkpoint.init_ckpt_path:
            logger.info(f"Loading initial model from {args.checkpoint.init_ckpt_path}")
            load_from_checkpoint(
                args.checkpoint.init_ckpt_path, model, model_key="model"
            )  # Put model_key="" if its directly the model checkpoint
            model.rope_embeddings.reset_parameters()  # For RoPe initialization since it's a buffer it might not be loaded
        else:
            with torch.random.fork_rng(devices=[torch.cuda.current_device()]):
                torch.manual_seed(args.model.seed)
                model.init_weights()
        check_model_value_range(model, range=10.0, std=1.0)

        # log model size

        logger.info(f"Model size: {model_param_count:,} total parameters")

        gpu_memory_monitor = GPUMemoryMonitor("cuda")
        logger.info(
            f"GPU capacity: {gpu_memory_monitor.device_name} ({gpu_memory_monitor.device_index}) "
            f"with {gpu_memory_monitor.device_capacity_gib:.2f}GiB memory"
        )
        logger.info(f"GPU memory usage: {gpu_memory_monitor}")

        # build optimizer after apply parallelisms to the model
        optimizer, scheduler = build_optimizer(model, args.optim, args.steps)
        data_loader_state = init_dataloader_state_from_args(
            args.data, dp_rank, dp_degree
        )

        train_state = TrainState(
            step=0,
            acc_step=0,
            data_loader_state=data_loader_state,
            scheduler=scheduler,
        )

        checkpoint = CheckpointManager.instantiate_and_make_dir(args.checkpoint)
        checkpoint.load(model, optimizer, train_state, world_mesh)
        # Either load from latest checkpoint or start from scratch
        if args.probe_freq is not None:
            if get_is_master():
                os.makedirs(Path(args.dump_dir) / "probe", exist_ok=True)
            torch.distributed.barrier()
            probe = AutoProbeD(
                model,
                (
                    Path(args.dump_dir) / "probe" / f"probe.{dp_rank}.jsonl"
                    if (dp_rank % 128 == 0)
                    else None
                ),
            )
            probe_mod = model._orig_mod if args.distributed.compile else model

        gc.disable()

        # train loop
        model.train()
        metric_logger = context_stack.enter_context(
            MetricLogger(Path(args.dump_dir) / "metrics.jsonl", args)
        )
        data_loader = context_stack.enter_context(
            build_dataloader_from_args(
                args.data,
                state=train_state.data_loader_state,
            )
        )
        torch_profiler = context_stack.enter_context(
            maybe_run_profiler(args.dump_dir, model, args.profiling)
        )

        nwords_since_last_log = 0
        time_last_log = timer()
        gc.collect()
        while train_state.step < args.steps:
            # We constrain train_state.acc_step to be in range 0 to args.grad_acc_steps - 1
            train_state.acc_step += 1
            train_state.acc_step = train_state.acc_step % args.grad_acc_steps

            # get batch
            curr_lr = float(optimizer.param_groups[0]["lr"])
            data_load_start = timer()
            batch, train_state.data_loader_state = next(data_loader)
            batch = torch.tensor(
                batch,
                dtype=torch.long,
            )

            if every_n_steps(train_state, args.gc_collect_freq, acc_step=0):
                logger.info("garbage collection")
                # we do garbage collection manually otherwise different processes
                # run the GC at different times so they slow down the whole pipeline
                gc.collect()

            input_ids = batch[:, :, 0].cuda()
            labels = batch[:, :, 1].cuda()
            data_load_time = round(timer() - data_load_start, 4)
            nwords_since_last_log += input_ids.numel()

            bsz, seqlen = labels.shape

            # forward
            start_timer = torch.cuda.Event(enable_timing=True)
            end_timer = torch.cuda.Event(enable_timing=True)
            start_timer.record()

            # This is an automatic probe that will compute statistics
            # of all linears' inputs, weights and outputs
            # along with attention logits and entropy
            # both in forward and backward pass
            if (args.probe_freq is not None) and every_n_steps(
                train_state, args.probe_freq, acc_step=1 % args.grad_acc_steps
            ):
                # Here we do a fake forward and backward pass on a smaller
                # batch size to avoid OOM
                # This assumes the model has no stateful layers (batch norm..)
                assert (
                    next(probe_mod.parameters()).grad is None
                ), "Can't probe model if grads are not reset"

                with probe:
                    probe.metadata = {
                        "it": train_state.step,
                        "global_step": train_state.step,
                        "loop": "lingua",
                    }
                    # Non compiled model uses roughly 2x memory in our exps
                    # So we divide bsz by 2 or seqlen by 2
                    probe_bsz = max(1, bsz // 2)
                    probe_seq = seqlen if (bsz // 2 >= 1) else (seqlen // 2)
                    probe_loss = probe_mod(
                        input_ids[:probe_bsz, :probe_seq],
                        labels[:probe_bsz, :probe_seq],
                    )
                    probe_loss.backward()
                    # We zero grads to cancel this fake step
                    optimizer.zero_grad()

                assert (
                    next(probe_mod.parameters()).grad is None
                ), "Probe model shouldn't have grads at this point"
            loss = model(input_ids, labels)

            # We scale loss with grad_acc_steps so the gradient is the same
            # regardless of grad_acc_steps
            loss = loss / args.grad_acc_steps
            # backward on scaled loss to create scaled gradients
            loss.backward()
            # For logging we undo that scaling
            loss = loss.detach() * args.grad_acc_steps

            grad_norm = torch.nn.utils.clip_grad_norm_(
                model.parameters(), max_norm=args.optim.clip, foreach=True
            )

            grad_norm = (
                grad_norm.full_tensor() if isinstance(grad_norm, DTensor) else grad_norm
            ).item()

            # optimizer step
            if train_state.acc_step == 0:
                optimizer.step()
                scheduler.step()
                optimizer.zero_grad()
                train_state.step += 1

            # updates the scale for next iteration
            # training iteration complete
            end_timer.record()

            torch.cuda.synchronize()

            curr_iter_time = round(start_timer.elapsed_time(end_timer) * 1e-3, 4)

            # if profiler is active
            if torch_profiler:
                xformers.profiler.step()

            # log metrics
            if every_n_steps(
                train_state,
                args.logging.freq,
                acc_step=None if args.logging.acc_freq else 0,
                acc_freq=args.logging.acc_freq,
            ):
                time_delta = timer() - time_last_log
                wps = nwords_since_last_log / (time_delta * args.distributed.tp_size)

                gpu_mem_stats = gpu_memory_monitor.get_peak_stats()

                total_acc_steps = (
                    args.grad_acc_steps * train_state.step + train_state.acc_step
                )
                tokens_per_gpu = (
                    total_acc_steps * args.data.batch_size * args.data.seq_len
                )
                total_tokens = dp_degree * tokens_per_gpu
                # This is an estimate and the correct values may change
                # if you change the architecture
                # Use xformer's analyze profile trace to get actual measurement
                FLOPS = (
                    get_num_flop_per_token(
                        model_param_count - args.model.vocab_size * args.model.dim,
                        args.model.n_layers,
                        args.model.dim,
                        args.data.seq_len,
                    )
                    * wps
                )
                metrics = flatten_dict(
                    {
                        "global_step": train_state.step,
                        "acc_step": train_state.acc_step,
                        "speed": {
                            "wps": wps,
                            "FLOPS": FLOPS,
                            "curr_iter_time": curr_iter_time,
                            "data_load_time": data_load_time,
                        },
                        "optim": {
                            "grad_norm": grad_norm,
                            "lr": curr_lr,
                            "total_tokens": total_tokens,
                        },
                        "memory": gpu_mem_stats._asdict(),
                    },
                    sep="/",
                )

                to_sync = {}
                to_sync["loss/out"] = loss.item()
                metrics.update(dist_mean_dict(to_sync))

                if get_is_master():
                    metric_logger.log(metrics)

                gpu_memory_monitor.reset_peak_stats()
                nwords_since_last_log = 0
                time_last_log = timer()
                logger.info(
                    f"step: {train_state.step}"
                    f"  acc: {train_state.acc_step}"
                    f"  loss: {round(loss.item(),4):>7}"
                    f"  grad: {grad_norm:.2e}"
                    f"  flops: {FLOPS:.2e}"
                    f"  wps: {wps:.2e}"
                    f"  iter: {curr_iter_time:>7}"
                    f"  data: {data_load_time:>5}"
                    f"  lr: {curr_lr:.2e}"
                    f"  mem: {gpu_mem_stats.max_active_pct:.0f}%"
                    f"  pow: {gpu_mem_stats.power_draw/1000} W"
                )

            saved = False
            if every_n_steps(
                train_state, args.checkpoint.dump.every, acc_step=0
            ) or every_n_steps(train_state, args.checkpoint.eval.every, acc_step=0):
                saved = checkpoint.save(
                    model,
                    optimizer,
                    train_state,
                    args,
                    device_mesh=world_mesh,
                )

            if args.eval is not None and every_n_steps(
                train_state, args.checkpoint.eval.every, acc_step=0
            ):
                from bytelatent.eval import EVAL_FOLDER_NAME, EvalArgs, launch_eval

                eval_args = dataclass_from_dict(EvalArgs, args.eval)

                eval_args.global_step = train_state.step
                eval_args.ckpt_dir = str(checkpoint.existing_saves[-1])
                eval_args.dump_dir = str(
                    os.path.join(
                        args.dump_dir,
                        "evals",
                        EVAL_FOLDER_NAME.format(train_state.step),
                    )
                )
                eval_args.metric_log_dir = args.dump_dir
                if args.async_eval_gpus is None:
                    launch_eval(eval_args)
                elif get_is_master():
                    if wandb.run is not None and args.logging.wandb is not None:
                        eval_args.wandb = deepcopy(args.logging.wandb)
                    assert args.async_eval_gpus > 0
                    logger.info(f"Launching evals on {args.async_eval_gpus} gpus")
                    with clean_env():
                        launch_job(
                            StoolArgs(
                                asdict(eval_args),
                                script="apps.main.eval",
                                copy_code=False,
                                nodes=args.async_eval_gpus // 8,
                                qos="lowest",
                            )
                        )

            if preemption_flag["flag"]:
                if not saved:
                    checkpoint.save(
                        model,
                        optimizer,
                        train_state,
                        args,
                        device_mesh=world_mesh,
                    )
                requeue_slurm_job()
                sys.exit(0)

    if not saved:
        checkpoint.save(
            model,
            optimizer,
            train_state,
            args,
            device_mesh=world_mesh,
        )
    gc.collect()


def main():
    """
    The command line interface here uses OmegaConf https://omegaconf.readthedocs.io/en/2.3_branch/usage.html#from-command-line-arguments
    This accepts arguments as a dot list
    So if the dataclass looks like

    @dataclass
    class DummyArgs:
        name: str
        model: LMTransformerArgsgs

    @dataclass
    class LMTransformerArgsgs:
        dim: int

    Then you can pass model.dim=32 to change values in LMTransformerArgsgs
    or just name=tictac for top level attributes.

    The behavior here is as follows:
    1. We instantiate TrainArgs with its default values
    2. We override those default values with the ones in the provided config file
    3. We override the result with the additional arguments provided through command line

    For example, if the config is the following

    model:
        dim: 128
        n_layers: 4

    and you call train.py with train.py model.dim=64

    Then the final TrainArgs will have

    model:
        dim: 64
        n_layers: 4

    Plus all the default values in TrainArgs dataclass.
    """
    cli_args = OmegaConf.from_cli()
    file_cfg = OmegaConf.load(cli_args.config)
    # We remove 'config' attribute from config as the underlying DataClass does not have it
    del cli_args.config

    default_cfg = OmegaConf.structured(TrainArgs())
    cfg = OmegaConf.merge(default_cfg, file_cfg, cli_args)
    cfg = OmegaConf.to_object(cfg)

    train(cfg)


if __name__ == "__main__":
    main()