File size: 13,369 Bytes
bcc039b
 
 
 
7517ac2
bcc039b
 
 
 
 
 
 
 
7517ac2
 
 
 
 
 
 
 
 
bcc039b
82ab593
7044771
7517ac2
 
 
 
 
 
 
 
 
 
 
 
 
bcc039b
 
 
7517ac2
 
bcc039b
 
 
7517ac2
bcc039b
7044771
bcc039b
 
 
7517ac2
 
 
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7044771
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7044771
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7044771
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
7517ac2
 
 
 
 
 
 
 
083656c
7517ac2
 
 
 
19a3f75
7517ac2
 
 
 
 
083656c
 
7517ac2
 
 
 
083656c
7517ac2
083656c
7517ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19a3f75
 
 
7517ac2
 
 
083656c
 
 
 
7517ac2
 
083656c
 
 
 
96d51b5
 
 
7517ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7044771
7517ac2
 
 
 
bcc039b
7517ac2
 
 
 
 
 
 
7044771
 
bcc039b
7044771
 
 
bcc039b
7044771
bcc039b
b79eb3e
 
 
 
 
 
 
 
 
 
 
 
 
 
bcc039b
7044771
 
 
bcc039b
 
 
 
 
 
083656c
bcc039b
7517ac2
 
 
 
 
083656c
 
 
 
 
 
 
 
 
 
 
 
 
7517ac2
 
 
 
 
 
 
 
 
083656c
 
 
7517ac2
 
19a3f75
083656c
 
7517ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcc039b
7044771
bcc039b
7517ac2
 
7044771
7517ac2
 
 
7044771
 
bcc039b
 
7517ac2
bcc039b
 
7044771
 
bcc039b
7517ac2
7044771
bcc039b
 
 
7044771
 
 
7517ac2
bcc039b
7517ac2
7044771
bcc039b
 
 
 
 
7517ac2
7044771
bcc039b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# Copyright (c) Meta Platforms, Inc. and affiliates.

import json
import logging
import math
import os
from collections import defaultdict
from datetime import datetime

import torch
from lm_eval import simple_evaluate
from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from rich.progress import track
from torch.nn import functional as F

from bytelatent.args import (
    EvalArgs,
    TrainArgs,
    ValidationArgs,
    find_and_sanitize_chunks,
)
from bytelatent.checkpoint import CONSOLIDATE_FOLDER, consolidate_checkpoints
from bytelatent.config_parser import parse_args_to_pydantic_model
from bytelatent.data.file_util import get_fs
from bytelatent.data.iterators.arrow_iterator import ArrowFileIterator
from bytelatent.data.iterators.limit_iterator import LimitIterator
from bytelatent.data.iterators.packing_iterator import (
    PackingArgs,
    PackingIterator,
    PackingMode,
)
from bytelatent.data.iterators.preprocess_iterator import PreprocessIterator
from bytelatent.data.iterators.sequence_iterator import (
    SequenceIterator,
    SequencePackingArgs,
)
from bytelatent.data.patcher import PatcherArgs, PatchingModeEnum
from bytelatent.distributed import (
    DistributedArgs,
    dist_mean_dict,
    dist_sum,
    get_device_mesh,
    get_global_rank,
    get_world_size,
    setup_torch_distributed,
    to_py_num,
)
from bytelatent.generate import (
    PackedCausalTransformerGenerator,
    load_consolidated_model_and_tokenizer,
)
from bytelatent.model.blt import ByteLatentTransformer
from bytelatent.tokenizers.build_tokenizer import TokenizerArgs
from bytelatent.transformer import LMTransformer

EVAL_FOLDER_NAME = "{:010d}"

logger = logging.getLogger()


def all_dicts_same(dict_list):
    if not dict_list:  # Check if the list is empty
        return True

    # Compare each dictionary to the first one
    first_dict = dict_list[0]
    return all(d == first_dict for d in dict_list)


class MockAccelerator:
    def gather(self, tensor):
        l = [torch.zeros_like(tensor) for _ in range(get_world_size())]
        torch.distributed.all_gather(l, tensor)
        return torch.stack(l)

    def wait_for_everyone(self):
        torch.distributed.barrier()


# Light wrapper around generator for lm-eval harness
class EvalHarnessLM(LM):
    def __init__(self, generator):
        super().__init__()
        self.generator = generator
        self.accelerator = MockAccelerator()
        self._rank = get_global_rank()
        self._world_size = get_world_size()
        self.device = generator.device

    def generate_until(self, requests: list[Instance]) -> list[str]:
        prompts, gen_args = zip(*[req.args for req in requests])
        assert all_dicts_same(gen_args), "Doesn't support different gen args for now"
        gen_args = gen_args[0]
        temperature = gen_args.get("temperature", 0.0)
        top_p = gen_args.get("top_p", None)
        top_k = gen_args.get("top_k", None)
        until = gen_args.get("until", [])

        self.generator.temperature = temperature
        self.generator.top_p = top_p
        self.generator.top_k = top_k
        self.generator.until = until
        generations, _, _ = self.generator.generate(prompts)
        filtered_gen = []
        for g in generations:
            for e in until:
                g = g.replace(e, "")
            filtered_gen.append(g)
        return filtered_gen

    def loglikelihood(self, requests: list[Instance]) -> list[tuple[float, bool]]:
        prompts, continuations = zip(*[req.args for req in requests])
        inputs = [req.args[0] + req.args[1] for req in requests]
        max_gen_len = self.generator.max_gen_len
        # We temporarily lower max gen len
        self.generator.max_gen_len = 1
        _, lls, greedy = self.generator.generate(inputs)
        results = []
        for p, ll, gr in zip(prompts, lls, greedy):
            p_len = len(
                self.generator.tokenizer.encode(p, add_bos=False, add_eos=False)
            )
            results.append((ll[p_len:].sum().item(), gr[p_len:].all().item()))

        self.generator.max_gen_len = max_gen_len
        return results

    def loglikelihood_rolling(self, requests: list[Instance]) -> list[float]:
        prompts = [req.args[0] for req in requests]
        max_gen_len = self.generator.max_gen_len
        # We temporarily lower max gen len
        self.generator.max_gen_len = 1
        _, lls, _ = self.generator.generate(prompts)
        results = []
        for ll in lls:
            results.append((ll.sum().item(),))
        self.generator.max_gen_len = max_gen_len

        return results


@torch.no_grad()
def eval_ppl_on_path(
    *,
    world_rank: int,
    world_size: int,
    model: LMTransformer | ByteLatentTransformer,
    tokenizer_args: TokenizerArgs,
    patcher_args: PatcherArgs,
    packing_args: PackingArgs,
    add_patches: bool,
    path: str,
    arrow_batch_size: int,
    max_n_docs: int | None,
    max_n_batches: int | None,
    s3_profile: str | None = None,
):
    model.eval()
    seq_len = model.get_output_seq_len()
    arrow_iterator = ArrowFileIterator(
        file_path=None,
        dataset_files=[path],
        entropy_model_name=None,
        worker_id=world_rank,
        num_workers=world_size,
        arrow_batch_size=arrow_batch_size,
        preprocess_dir=None,
        s3_profile=s3_profile,
        file_format="arrow" if path.endswith("arrow") else "json",
    )
    if max_n_docs is not None:
        arrow_iterator = LimitIterator(arrow_iterator, limit=max_n_docs)
    preprocess_iterator = PreprocessIterator(
        arrow_iterator,
        patcher_args=patcher_args,
        tokenizer_args=tokenizer_args,
        add_patches=add_patches,
    )
    sequence_iterator = SequenceIterator(
        preprocess_iterator,
        sequence_packing_args=SequencePackingArgs(
            output_seq_len=seq_len,
            # Effectively disables shuffles
            buffer_size=1,
        ),
        rng_state=None,
    )
    packing_iterator = PackingIterator(sequence_iterator, packing_args=packing_args)
    total_loss = 0.0
    n_bytes = 0
    batch_iterator = packing_iterator.create_iter()
    for i, batch in enumerate(batch_iterator):
        if i == max_n_batches:
            break
        x = torch.from_numpy(batch.x).cuda()
        y = torch.from_numpy(batch.y).cuda()
        mask = None if batch.mask is None else torch.from_numpy(batch.mask).cuda()
        patch_lengths = batch.patch_lengths
        if patch_lengths is not None:
            patch_lengths = torch.from_numpy(patch_lengths).cuda()

        if tokenizer_args.name in ["bytes", "blt"]:
            n_bytes += y.numel() if mask is None else mask.sum().item()
            if isinstance(model, ByteLatentTransformer):
                pred = model(x, patch_lengths=patch_lengths)
            else:
                pred = model(x)
            loss = F.cross_entropy(
                pred.flatten(0, 1), y.flatten(0, 1), reduction="sum", ignore_index=0
            )
            total_loss += loss.item()
        else:
            raise NotImplementedError()
    all_n_bytes = to_py_num(dist_sum(n_bytes))
    all_total_loss = to_py_num(dist_sum(total_loss))
    return {
        "n_bytes": all_n_bytes,
        "n_bytes_gpu": n_bytes,
        "loss_sum": all_total_loss,
        "loss_sum_gpu": total_loss,
        "loss_mean": all_total_loss / all_n_bytes,
        "loss_mean_gpu": total_loss / n_bytes,
        "ppl": math.exp(all_total_loss / all_n_bytes) if all_n_bytes > 0 else 0.0,
        "bpb": all_total_loss / math.log(2) / all_n_bytes,
    }


def launch_eval(eval_args: EvalArgs):
    assert eval_args.dump_dir is not None
    assert eval_args.ckpt_dir is not None
    distributed_args = DistributedArgs()
    distributed_args.configure_world()
    if not torch.distributed.is_initialized():
        setup_torch_distributed(distributed_args)

    world_mesh = get_device_mesh(distributed_args)
    dp_mesh = world_mesh["dp_replicate"]
    assert distributed_args.dp_shard == 1
    world_size = dp_mesh.size()
    world_rank = dp_mesh.get_local_rank()

    fs = get_fs(eval_args.ckpt_dir, s3_profile=eval_args.s3_profile)
    if (
        fs.exists(eval_args.ckpt_dir)
        and fs.exists(os.path.join(eval_args.ckpt_dir, "params.json"))
        and len(fs.glob(os.path.join(eval_args.ckpt_dir, "*.pth"))) != 0
    ):
        consolidate_path = eval_args.ckpt_dir
    else:
        if eval_args.consolidate_if_needed:
            logger.info(
                "Found a model checkpoint, but it has not been consolidated.... so consolidating the checkpoint"
            )
            consolidate_path = os.path.join(
                eval_args.ckpt_dir, eval_args.consolidate_folder
            )
            if not fs.exists(consolidate_path) and get_global_rank() == 0:
                consolidate_path = consolidate_checkpoints(fs, eval_args.ckpt_dir)
            logger.info("Model consolidated to: %s", consolidate_path)
        else:
            raise ValueError(
                "Did not find a consolidated checkpoint and consolidate_if_needed is False"
            )

    fs.mkdirs(eval_args.dump_dir, exist_ok=True)
    with fs.open(os.path.join(eval_args.dump_dir, "config.yaml"), "w") as f:
        f.write(eval_args.model_dump_json())

    torch.distributed.barrier()
    logger.info("Loading model")
    model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
        consolidate_path,
    )
    pad_id = 0 if train_cfg.data.tokenizer_args.name == "bytes" else tokenizer.boe_id
    model.eval()
    logger.info("Model loaded")

    ppl_results = None
    if eval_args.run_ppl:
        assert eval_args.validation is not None
        packing_args = PackingArgs(
            batch_size=eval_args.validation.batch_size,
            seq_len=train_cfg.data.seq_len,
            max_length=train_cfg.data.max_encoder_seq_length,
            pad_to_max_length=True,
            enable_byte_ngrams=False,
            pad_id=pad_id,
            packing_mode=(
                PackingMode.BYTES
                if train_cfg.data.patcher_args.patching_mode == PatchingModeEnum.byte
                else PackingMode.PATCHING
            ),
        )
        if len(eval_args.validation.sources) > 0:
            ppl_results = {}
            logger.info("Starting PPL evaluation on validation sets")
            for source in eval_args.validation.sources:
                ppl_results[source] = eval_ppl_on_path(
                    world_rank=world_rank,
                    world_size=world_size,
                    model=model,
                    tokenizer_args=train_cfg.data.tokenizer_args,
                    patcher_args=train_cfg.data.patcher_args,
                    packing_args=packing_args,
                    add_patches=train_cfg.data.add_patches,
                    path=os.path.join(eval_args.validation.root_dir, source),
                    max_n_docs=eval_args.validation.max_n_docs,
                    max_n_batches=eval_args.validation.max_n_batches,
                    arrow_batch_size=20,
                    s3_profile=eval_args.s3_profile,
                )

    task_results = None
    if eval_args.run_tasks:
        assert eval_args.generator is not None
        assert eval_args.harness is not None
        generator = PackedCausalTransformerGenerator(
            eval_args.generator, model, tokenizer
        )
        wrap = EvalHarnessLM(generator)
        # TODO: This needs to be checked/sped up
        task_results = simple_evaluate(wrap, **eval_args.harness.model_dump())

    results = {"ppl": ppl_results, "tasks": task_results}
    # TODO: Serial and Parallel yield slightly different number of bytes, debug this later,
    # leaving this log statement here to help with that.
    # logging.info("Rank: %s Results: %s", world_rank, results)

    if get_global_rank() == 0:
        with fs.open(os.path.join(eval_args.dump_dir, "results.json"), "w") as f:
            f.write(json.dumps(results))
        logger.info(f"All evaluation results: {results}")
        if ppl_results is not None:
            with fs.open(os.path.join(eval_args.dump_dir, "validation.json"), "w") as f:
                f.write(json.dumps(ppl_results))
            logger.info(f"All validation results: {ppl_results}")

    if eval_args.metric_log_dir and get_global_rank() == 0:
        metric_log_path = os.path.join(eval_args.metric_log_dir, "metrics.eval.jsonl")

        logger.info(f"Writing metric logs to {metric_log_path}")
        timestamp: dict[str, int | str] = {
            "created_at": datetime.utcnow().isoformat(),
        }
        if eval_args.global_step is not None:
            timestamp["global_step"] = eval_args.global_step
        print(
            json.dumps(timestamp | results),
            file=fs.open(metric_log_path, mode="a"),
            flush=True,
        )

        val_log_path = os.path.join(
            eval_args.metric_log_dir, "metrics.validation.jsonl"
        )
        if ppl_results is not None:
            print(
                json.dumps(timestamp | ppl_results),
                file=fs.open(val_log_path, mode="a"),
                flush=True,
            )


def main():
    eval_args = parse_args_to_pydantic_model(EvalArgs)
    launch_eval(eval_args)


if __name__ == "__main__":
    main()