File size: 6,911 Bytes
bcc039b
 
 
 
 
 
 
 
fc3399e
 
 
 
63913e4
 
 
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
fc3399e
bcc039b
 
 
fc3399e
 
bcc039b
 
 
 
 
 
 
 
 
 
63913e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcc039b
 
 
 
 
fc3399e
bcc039b
 
 
 
 
 
fc3399e
 
 
 
 
bcc039b
 
 
 
 
 
fc3399e
bcc039b
 
 
 
 
 
 
 
 
 
63913e4
 
 
 
bcc039b
 
 
7622d28
 
 
 
 
bcc039b
 
 
 
 
 
7622d28
 
 
 
 
bcc039b
 
 
 
63913e4
 
 
 
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc3399e
 
 
 
 
 
bcc039b
 
 
 
 
 
 
7622d28
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) Meta Platforms, Inc. and affiliates.
from logging import getLogger
from typing import Any

import numpy as np
from pydantic import BaseModel, ConfigDict

from bytelatent.data.data_types import BltSequence
from bytelatent.data.iterators.abstract_iterator import (
    PydanticIteratorState,
    StatefulIterator,
)
from bytelatent.data.iterators.arrow_iterator import ArrowFileIterator
from bytelatent.data.iterators.limit_iterator import LimitIterator
from bytelatent.data.iterators.looping_iterator import LoopingIterator
from bytelatent.data.iterators.preprocess_iterator import (
    PreprocessIterator,
    PreprocessIteratorState,
)

logger = getLogger()


class SequencePackingArgs(BaseModel):
    model_config = ConfigDict(extra="forbid")
    output_seq_len: int
    buffer_size: int


class SequenceIteratorState(PydanticIteratorState):
    model_config = ConfigDict(extra="forbid")
    sequence_packing_args: SequencePackingArgs
    preprocess_iterator_state: PreprocessIteratorState
    # If None, rng is disabled.
    rng_state: dict[str, Any] | None

    def build(self):
        preprocess_iterator = self.preprocess_iterator_state.build()
        return SequenceIterator(
            preprocess_iterator,
            sequence_packing_args=self.sequence_packing_args,
            rng_state=self.rng_state,
        )


def get_datafile(
    iterator: PreprocessIterator | ArrowFileIterator | LoopingIterator | LimitIterator,
):
    if isinstance(iterator, ArrowFileIterator):
        return f"file={iterator.file_path} n_shards={len(iterator.dataset_files) if iterator.dataset_files is not None else None}"
    elif isinstance(iterator, PreprocessIterator):
        return get_datafile(iterator.arrow_iterator)
    elif isinstance(iterator, LoopingIterator):
        return get_datafile(iterator.file_iterator)
    elif isinstance(iterator, LimitIterator):
        return get_datafile(iterator.base_iterator)
    else:
        raise NotImplementedError()


class SequenceIterator(StatefulIterator):
    def __init__(
        self,
        preprocess_iterator: PreprocessIterator,
        *,
        rng_state: dict[str, Any] | None,
        sequence_packing_args: SequencePackingArgs,
    ):
        self.preprocess_iterator = preprocess_iterator
        self.sequence_packing_args = sequence_packing_args
        self.output_seq_len = sequence_packing_args.output_seq_len
        self.buffer_size = sequence_packing_args.buffer_size
        if rng_state is None:
            self.rng = None
        else:
            self.rng = np.random.default_rng()
            self.rng.bit_generator.state = rng_state

    def get_state(self):
        # TODO: need to also perist the current shuffle buffer
        return SequenceIteratorState(
            sequence_packing_args=self.sequence_packing_args,
            preprocess_iterator_state=self.preprocess_iterator.get_state(),
            rng_state=None if self.rng is None else self.rng.bit_generator.state,
        )

    def create_iter(self):
        example_iter = self.preprocess_iterator.create_iter()
        n_buffer_patches = self.buffer_size * self.output_seq_len

        patch_lengths: list[int] = []
        tokens: list[int] = []
        mask: list[bool] = []
        first = True
        logger.info(
            "Starting first buffer for: %s",
            get_datafile(self.preprocess_iterator),
        )
        for example in example_iter:
            assert example.tokens is not None
            assert example.mask is not None
            if self.preprocess_iterator.add_patches:
                assert example.patch_lengths is not None
                assert len(example.tokens) == sum(example.patch_lengths)
            else:
                assert example.patch_lengths is None
            assert len(example.tokens) != 0
            assert len(example.mask) != 0
            assert len(example.tokens) == len(example.mask)

            tokens.extend(example.tokens)
            mask.extend(example.mask)
            if self.preprocess_iterator.add_patches:
                patch_lengths.extend(example.patch_lengths)
            else:
                # This lets the rest of the code work as expected and just yield byte seqs
                patch_lengths.extend([1] * len(example.tokens))

            while len(patch_lengths) >= n_buffer_patches:
                if first:
                    first = False
                    logger.info(
                        "First buffer complete for: %s",
                        get_datafile(self.preprocess_iterator),
                    )

                x_patches = np.array(patch_lengths[:n_buffer_patches]).reshape(
                    self.buffer_size, self.output_seq_len
                )
                seq_tokens = []
                seq_mask = []
                start_id = 0
                # We fix the number of patches and therefore global steps per batch
                # so we have a variable number of tokens we need to account for
                for num_tokens in x_patches.sum(axis=-1):
                    seq_tokens.append(tokens[start_id : start_id + num_tokens])
                    seq_mask.append(mask[start_id : start_id + num_tokens])
                    start_id += num_tokens

                assert start_id == x_patches.sum()

                # Remove what we just added from the buffer
                patch_lengths = patch_lengths[n_buffer_patches:]
                tokens = tokens[x_patches.sum() :]
                mask = mask[x_patches.sum() :]

                seq_patch_lengths: list[list[int]] = x_patches.tolist()
                assert len(seq_patch_lengths) == self.buffer_size
                if self.rng is None:
                    permutations = list(range(len(seq_patch_lengths)))
                else:
                    permutations = self.rng.permutation(len(seq_patch_lengths))

                for idx in permutations:
                    assert len(seq_patch_lengths[idx]) == self.output_seq_len
                    assert (
                        sum(seq_patch_lengths[idx])
                        == len(seq_tokens[idx])
                        == len(seq_mask[idx])
                    ), f"{sum(seq_patch_lengths[idx])}, {len(seq_tokens[idx])} {len(seq_mask[idx])}, idx={idx}"
                    assert seq_patch_lengths[idx][0] > 0, f"{seq_patch_lengths[idx]}"
                    if self.preprocess_iterator.add_patches:
                        yield BltSequence(
                            tokens=seq_tokens[idx],
                            mask=seq_mask[idx],
                            patch_lengths=seq_patch_lengths[idx],
                        )
                    else:
                        yield BltSequence(
                            tokens=seq_tokens[idx],
                            mask=seq_mask[idx],
                            patch_lengths=None,
                        )