File size: 21,330 Bytes
570eaa9
 
 
b074257
 
545bc06
570eaa9
b074257
545bc06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570eaa9
b074257
570eaa9
b074257
 
a528449
 
b074257
a528449
b074257
a528449
b074257
a528449
b074257
 
545bc06
 
a528449
 
 
 
 
 
545bc06
 
a528449
b074257
a528449
b074257
 
 
545bc06
 
b074257
a528449
545bc06
a528449
545bc06
 
a528449
b074257
a528449
 
545bc06
 
 
 
 
 
a528449
 
b074257
 
 
 
 
 
545bc06
b074257
 
 
545bc06
 
 
 
b074257
545bc06
 
b074257
 
545bc06
 
 
b074257
545bc06
 
b074257
 
545bc06
b074257
 
 
 
 
 
 
545bc06
 
b074257
 
 
 
 
 
545bc06
b074257
 
 
545bc06
b074257
 
545bc06
 
b074257
 
 
 
545bc06
 
 
b074257
 
545bc06
 
b074257
 
 
545bc06
b074257
545bc06
 
b074257
 
 
 
545bc06
b074257
 
 
 
570eaa9
 
b074257
545bc06
570eaa9
 
 
b074257
570eaa9
 
a528449
b074257
 
545bc06
b074257
545bc06
b074257
545bc06
b074257
570eaa9
b074257
 
 
 
545bc06
 
 
b074257
 
 
 
545bc06
b074257
545bc06
 
b074257
545bc06
 
b074257
 
 
545bc06
b074257
545bc06
 
b074257
545bc06
 
b074257
 
545bc06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a528449
b074257
545bc06
a528449
 
b074257
a528449
b074257
545bc06
 
a528449
b074257
545bc06
570eaa9
b074257
 
570eaa9
b074257
 
a528449
 
545bc06
 
2af55e5
545bc06
 
b074257
545bc06
2af55e5
 
b074257
545bc06
b074257
 
 
 
545bc06
b074257
545bc06
b074257
 
545bc06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2af55e5
a528449
2af55e5
 
a528449
545bc06
b074257
545bc06
 
 
 
 
 
 
 
b074257
2af55e5
 
570eaa9
 
545bc06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b074257
545bc06
570eaa9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import os
import gradio as gr
import torch
import itertools # For color cycling
import tiktoken # For GPT-4 tokenizer
from transformers import AutoTokenizer # For Llama3 tokenizer - AutoModel usually not needed just for tokenizer

# Bytelatent imports (assuming they are in the python path)
try:
    from bytelatent.data.file_util import get_fs
    from bytelatent.generate_patcher import patcher_nocache
    from bytelatent.tokenizers.blt_tokenizer import BltTokenizer
    from bytelatent.plotting.entropy_figure_via_matplot_lib import plot_entropies
    from bytelatent.args import TrainArgs
    from download_blt_weights import main as ensure_present
    BLT_AVAILABLE = True
except ImportError as e:
    print(f"Warning: Bytelatent libraries not found. Bytelatent functionality will be disabled. Error: {e}")
    BLT_AVAILABLE = False
    # Define dummy classes/functions if BLT is not available to avoid NameErrors later
    class BltTokenizer: pass
    class TrainArgs: pass
    def patcher_nocache(*args, **kwargs): return None
    def plot_entropies(*args, **kwargs): return None
    def ensure_present(*args, **kwargs): pass


# --- Global Setup ---

# Define colors for patches/tokens
VIZ_COLORS = [
    "#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c",
    "#fdbf6f", "#ff7f00", "#cab2d6", "#6a3d9a", "#ffff99", "#b15928"
] # Add more if you expect many segments

LLAMA3_MODEL_NAME = "meta-llama/Meta-Llama-3-8B" # Or choose another variant like Instruct

# --- Helper Functions ---

def create_bytelatent_highlight_data(tokenizer, patch_lengths_tensor, tokens_tensor, colors):
    """Generates data for gr.HighlightedText based on bytelatent patches."""
    if not BLT_AVAILABLE:
        return [("Bytelatent library not available.", "Error")]
    if patch_lengths_tensor is None or tokens_tensor is None or patch_lengths_tensor.numel() == 0:
        return None
    patch_lengths = patch_lengths_tensor.tolist()
    all_tokens = tokens_tensor.tolist()
    highlighted_data = []
    current_token_index = 0
    patch_count = 0 # Initialize patch count
    # color_cycler = itertools.cycle(colors) # Moved inside loop if needed per-patch
    for i, length in enumerate(patch_lengths):
        if length <= 0: continue
        patch_token_ids = all_tokens[current_token_index : current_token_index + length]
        if not patch_token_ids: continue
        try: patch_text = tokenizer.decode(patch_token_ids)
        except Exception as decode_err:
            print(f"Warning: Bytelatent patch decoding failed: {decode_err}")
            patch_text = f"[Decode Error: {len(patch_token_ids)} tokens]"
        patch_label = f"BL Patch {i+1}"
        highlighted_data.append((patch_text, patch_label))
        patch_count += 1 # Increment count for each valid patch added
        current_token_index += length

    # Handle remainder separately, don't count it as a 'patch'
    if current_token_index != len(all_tokens):
        print(f"Warning: Bytelatent token mismatch. Consumed {current_token_index}, total {len(all_tokens)}")
        remaining_tokens = all_tokens[current_token_index:]
        if remaining_tokens:
            try: remaining_text = tokenizer.decode(remaining_tokens)
            except Exception: remaining_text = f"[Decode Error: {len(remaining_tokens)} remaining tokens]"
            highlighted_data.append((remaining_text, "BL Remainder"))

    # Return both highlighted data and the calculated patch count
    return highlighted_data, patch_count


def create_tiktoken_highlight_data(prompt, colors):
    """Generates data for gr.HighlightedText based on tiktoken (gpt-4) tokens."""
    try:
        enc = tiktoken.get_encoding("cl100k_base")
        tiktoken_ids = enc.encode(prompt)
        highlighted_data = []
        # color_cycler = itertools.cycle(colors) # Moved inside loop if needed per-token
        for i, token_id in enumerate(tiktoken_ids):
            try: token_text = enc.decode([token_id])
            except UnicodeDecodeError:
                try:
                    token_bytes = enc.decode_single_token_bytes(token_id)
                    token_text = f"[Bytes: {token_bytes.hex()}]"
                except Exception: token_text = "[Decode Error]"
            except Exception as e:
                print(f"Unexpected tiktoken decode error: {e}")
                token_text = "[Decode Error]"
            token_label = f"GPT4 Tk {i+1}"
            highlighted_data.append((token_text, token_label))
        token_count = len(tiktoken_ids)
        print(f"Tiktoken processing complete. Found {token_count} tokens.")
        return highlighted_data, token_count
    except ImportError:
        print("Error: tiktoken library not found. Please install it: pip install tiktoken")
        return [("tiktoken library not installed.", "Error")], 0
    except Exception as tiktoken_err:
        print(f"Error during tiktoken processing: {tiktoken_err}")
        return [(f"Error processing with tiktoken: {str(tiktoken_err)}", "Error")], 0


def create_llama3_highlight_data(prompt, colors, model_name=LLAMA3_MODEL_NAME):
    """Generates data for gr.HighlightedText based on Llama 3 tokenizer."""
    try:
        # Load Llama 3 tokenizer from Hugging Face Hub
        print(f"Loading Llama 3 tokenizer: {model_name}")
        # Use trust_remote_code=True if required by the specific model revision
        tokenizer = AutoTokenizer.from_pretrained(model_name) #, trust_remote_code=True)
        print("Llama 3 tokenizer loaded.")

        # Encode the prompt
        llama_token_ids = tokenizer.encode(prompt)

        highlighted_data = []
        # color_cycler = itertools.cycle(colors) # Moved inside loop if needed per-token

        for i, token_id in enumerate(llama_token_ids):
            try:
                # Decode individual token.
                token_text = tokenizer.decode([token_id])
            except Exception as e:
                print(f"Unexpected Llama 3 decode error for token {token_id}: {e}")
                token_text = "[Decode Error]"

            token_label = f"Llama3 Tk {i+1}" # Clearer label prefix
            highlighted_data.append((token_text, token_label))

        token_count = len(llama_token_ids)
        print(f"Llama 3 processing complete. Found {token_count} tokens.")
        return highlighted_data, token_count

    except ImportError:
        print("Error: transformers or sentencepiece library not found. Please install them: pip install transformers sentencepiece")
        return [("transformers/sentencepiece library not installed.", "Error")], 0
    except OSError as e:
        # Handle errors like model not found, network issues, authentication needed
        print(f"Error loading Llama 3 tokenizer '{model_name}': {e}")
        error_msg = f"Could not load Llama 3 tokenizer '{model_name}'. Check model name and network."
        if "authentication" in str(e).lower():
             error_msg = f"Authentication required for Llama 3 tokenizer '{model_name}'. Use `huggingface-cli login`."
        return [(f"{error_msg} Error: {e}", "Error")], 0
    except Exception as llama_err:
        print(f"Error during Llama 3 processing: {llama_err}")
        import traceback
        traceback.print_exc() # Print full traceback for debugging
        return [(f"Error processing with Llama 3: {str(llama_err)}", "Error")], 0


# --- Main Processing Function ---

def process_text(prompt: str, model_name: str = "blt-1b"):
    """
    Processes the input prompt using ByteLatent, Tiktoken, and Llama 3,
    returning visualizations, counts, and status.

    Args:
        prompt: The input text string from the Gradio interface.
        model_name: The name of the bytelatent model to use.

    Returns:
        A tuple containing:
            - Matplotlib Figure for the entropy plot (or None).
            - List of tuples for bytelatent gr.HighlightedText (or None).
            - Integer count of bytelatent patches.
            - List of tuples for tiktoken gr.HighlightedText (or None).
            - Integer count of tiktoken tokens.
            - List of tuples for Llama 3 gr.HighlightedText (or None).
            - Integer count of Llama 3 tokens.
            - Status/Error message string.
    """
    fig = None
    bl_highlighted_data = None
    tk_highlighted_data = None
    llama_highlighted_data = None
    bl_count = 0
    tk_count = 0
    llama_count = 0
    status_message = "Starting processing..."

    # --- 1. Tiktoken Processing (Independent) ---
    status_message += "\nProcessing with Tiktoken (gpt-4)..."
    tk_highlighted_data, tk_count_calc = create_tiktoken_highlight_data(prompt, VIZ_COLORS)
    if tk_highlighted_data and tk_highlighted_data[0][1] == "Error":
        status_message += f"\nTiktoken Error: {tk_highlighted_data[0][0]}"
        tk_count = 0 # Ensure count is 0 on error
    else:
        tk_count = tk_count_calc # Assign calculated count
        status_message += f"\nTiktoken processing successful ({tk_count} tokens)."

    # --- 2. Llama 3 Processing (Independent) ---
    status_message += "\nProcessing with Llama 3 tokenizer..."
    llama_highlighted_data, llama_count_calc = create_llama3_highlight_data(prompt, VIZ_COLORS)
    if llama_highlighted_data and llama_highlighted_data[0][1] == "Error":
        status_message += f"\nLlama 3 Error: {llama_highlighted_data[0][0]}"
        llama_count = 0 # Ensure count is 0 on error
    else:
        llama_count = llama_count_calc # Assign calculated count
        status_message += f"\nLlama 3 processing successful ({llama_count} tokens)."

    # --- 3. Bytelatent Processing ---
    if BLT_AVAILABLE:
        try:
            status_message += f"\nLoading Bytelatent entropy model for '{model_name}'..."
            # (Bytelatent loading code remains the same)
            consolidated_path = os.path.join("hf-weights", model_name)
            train_args_path = os.path.join(consolidated_path, "params.json")
            if not os.path.exists(train_args_path): raise FileNotFoundError(f"BLT training args not found at {train_args_path}.")
            fs = get_fs(train_args_path); train_args = TrainArgs.model_validate_json(fs.read_text(train_args_path))
            bl_tokenizer = train_args.data.tokenizer_args.build(); assert isinstance(bl_tokenizer, BltTokenizer)
            patcher_args = train_args.data.patcher_args.model_copy(deep=True); patcher_args.realtime_patching = True
            device = "cuda" if torch.cuda.is_available() else "cpu"; print(f"Using BLT device: {device}")
            patcher_args.patching_device = device; patcher_args.device = device
            entropy_model_dir = os.path.join(consolidated_path, "entropy_model")
            if not os.path.exists(entropy_model_dir): raise FileNotFoundError(f"Entropy model directory not found at {entropy_model_dir}.")
            patcher_args.entropy_model_checkpoint_dir = entropy_model_dir; bl_patcher = patcher_args.build()
            status_message += "\nBytelatent entropy model loaded."

            # --- Processing ---
            status_message += "\nRunning Bytelatent entropy model patching..."
            print(f"Processing prompt with entropy model: '{prompt}'")
            prompt_bytes = prompt.encode('utf-8')
            max_bytes = 512 # Define max bytes
            if len(prompt_bytes) > max_bytes:
                print(f"Warning: Prompt exceeds {max_bytes} bytes ({len(prompt_bytes)}). Truncating for entropy model.")
                # Find the byte position that corresponds to the last full character within the limit
                # This avoids splitting a multi-byte character
                try:
                    last_char_pos = prompt_bytes[:max_bytes].rfind(b' ') # Simple whitespace split point find, might not be perfect
                    if last_char_pos == -1: # If no space, truncate hard (less ideal)
                         prompt_bl = prompt_bytes[:max_bytes].decode('utf-8', errors='ignore')
                    else:
                         prompt_bl = prompt_bytes[:last_char_pos].decode('utf-8', errors='ignore')

                except Exception: # Fallback to simple truncation on decode errors
                     prompt_bl = prompt_bytes[:max_bytes].decode('utf-8', errors='ignore')

                status_message += f"\nWarning: Prompt truncated to approx {len(prompt_bl.encode('utf-8'))} bytes for Bytelatent entropy model."
            else:
                prompt_bl = prompt

            results = patcher_nocache([prompt_bl], tokenizer=bl_tokenizer, patcher=bl_patcher)

            if not results:
                print("Bytelatent entropy processing returned no results.")
                status_message += "\nBytelatent entropy model warning: Processing completed, but no results were generated."
                bl_highlighted_data = [("No patches generated.", "Info")]
                bl_count = 0
            else:
                batch_patch_lengths, batch_scores, batch_tokens = results
                patch_lengths, scores, tokens = batch_patch_lengths[0], batch_scores[0], batch_tokens[0]
                # --- Visualization Data Generation ---
                try: decoded_output_for_plot = bl_tokenizer.decode(tokens.tolist())
                except Exception as decode_err:
                    print(f"Warning: Error decoding full sequence for plot: {decode_err}")
                    decoded_output_for_plot = prompt_bl # Use truncated prompt for plot if decode fails

                fig = plot_entropies(patch_lengths, scores, decoded_output_for_plot, threshold=bl_patcher.threshold)
                bl_highlighted_data, bl_count_calc = create_bytelatent_highlight_data(bl_tokenizer, patch_lengths, tokens, VIZ_COLORS)
                bl_count = bl_count_calc # Assign calculated count

                status_message += f"\nBytelatent entropy model processing and visualization successful ({bl_count} patches)."
                print("Bytelatent Entropy model processing and decoding complete.")

        except FileNotFoundError as e:
            print(f"Bytelatent Error: {e}")
            status_message += f"\nBytelatent FileNotFoundError: {str(e)}"
            bl_highlighted_data = [(f"Bytelatent Error: {e}", "Error")]
            bl_count = 0
        except Exception as e:
            print(f"An unexpected Bytelatent error occurred: {e}")
            import traceback
            traceback.print_exc()
            status_message += f"\nBytelatent Unexpected Error: {str(e)}"
            bl_highlighted_data = [(f"Bytelatent Error: {e}", "Error")]
            bl_count = 0
    else:
         status_message += "\nBytelatent processing skipped (library not found)."
         bl_highlighted_data = [("Bytelatent library not available.", "Error")]
         bl_count = 0
         fig = None # Ensure fig is None if BLT is skipped

    # Return all generated data and the final status message
    return fig, bl_highlighted_data, bl_count, tk_highlighted_data, tk_count, llama_highlighted_data, llama_count, status_message


# --- Gradio Interface ---

# Create color maps for HighlightedText dynamically
MAX_EXPECTED_SEGMENTS = 2000 # Increased max segments further just in case
common_error_map = {"Error": "#FF0000", "Info": "#808080"} # Red for errors, Gray for info

bytelatent_color_map = {f"BL Patch {i+1}": color for i, color in zip(range(MAX_EXPECTED_SEGMENTS), itertools.cycle(VIZ_COLORS))}
bytelatent_color_map["BL Remainder"] = "#AAAAAA"; bytelatent_color_map.update(common_error_map)

tiktoken_color_map = {f"GPT4 Tk {i+1}": color for i, color in zip(range(MAX_EXPECTED_SEGMENTS), itertools.cycle(VIZ_COLORS))}
tiktoken_color_map.update(common_error_map)

llama3_color_map = {f"Llama3 Tk {i+1}": color for i, color in zip(range(MAX_EXPECTED_SEGMENTS), itertools.cycle(VIZ_COLORS))}
llama3_color_map.update(common_error_map)


with gr.Blocks(theme=gr.themes.Origin()) as iface:
    gr.Markdown("# BLT's Entropy-based Patcher vs. Tokenizer Visualisation")
    gr.Markdown(
        "Enter text to visualize its segmentation according to different methods:\n"
        "1.  **Byte Latent Transformer (BLT):** Entropy-based patching plot and patched text (_for this space ONLY_ - limited to ~512 bytes).\n"
        "2.  **Tiktoken (GPT-4):** Text segmented by `cl100k_base` tokens.\n"
        f"3.  **Llama 3:** Text segmented by the `{LLAMA3_MODEL_NAME}` tokenizer."
    )

    with gr.Row():
        with gr.Column(scale=1): # Input Column
            prompt_input = gr.Textbox(
                label="Input Prompt",
                value="Daenerys Targaryen is in Game of Thrones, a fantasy epic by George R.R. Martin.",
                placeholder="Enter text here...",
                max_length=512, # Allow even longer input, Bytelatent will truncate
                lines=5,
                info="For this space ONLY, processing is limited to ~512 bytes."
            )
            submit_button = gr.Button("Generate Visualizations", variant="primary")
            status_output = gr.Textbox(label="Processing Status", interactive=False, lines=7) # Increased lines slightly

        with gr.Column(scale=2): # Output Column

            # --- Bytelatent Output Area ---
            with gr.Row(equal_height=False): # Use Row to place title and count together
                 gr.Markdown("### BLT Entropy Patcher Output (`blt_main_entropy_100m_512w`)")

            bl_count_output = gr.Number(label="Patch Count", value=0, interactive=False, scale=1, step=1) # Added Number output
            highlighted_output_bl = gr.HighlightedText(
                label="BLT's Entropy-based Patches",
                color_map=bytelatent_color_map,
                show_legend=False, # Legend can get very long
                # show_label=False, # Hide the HighlightedText label as we have the markdown title
                show_inline_category=False,
                # container=False, # Reduces vertical space slightly
            )
            plot_output = gr.Plot(label="Entropy vs. Token Index", show_label=True)

            # --- Tiktoken Output Area ---
            with gr.Row(equal_height=False):
                gr.Markdown("### Tiktoken Output (`cl100k_base`)")

            tk_count_output = gr.Number(label="Token Count", value=0, interactive=False, scale=1, step=1) # Added Number output
            highlighted_output_tk = gr.HighlightedText(
                label="Tiktoken Segmented Text",
                color_map=tiktoken_color_map,
                show_legend=False,
                show_inline_category=False,
                # show_label=False,
                # container=False,
            )

            # --- Llama 3 Output Area ---
            with gr.Row(equal_height=False):
                gr.Markdown(f"### Llama 3 Output (`{LLAMA3_MODEL_NAME}`)")

            llama_count_output = gr.Number(label="Token Count", value=0, interactive=False, scale=1, step=1) # Added Number output
            highlighted_output_llama = gr.HighlightedText(
                label="Llama 3 Segmented Text",
                color_map=llama3_color_map,
                show_legend=False,
                show_inline_category=False,
                # show_label=False,
                # container=False,
            )

    # Define the action for the button click
    submit_button.click(
        fn=process_text,
        inputs=prompt_input,
        # Ensure order matches the 8 return values of process_text
        outputs=[
            plot_output,             # fig
            highlighted_output_bl,   # bl_highlighted_data
            bl_count_output,         # bl_count          <-- New
            highlighted_output_tk,   # tk_highlighted_data
            tk_count_output,         # tk_count          <-- New
            highlighted_output_llama,# llama_highlighted_data
            llama_count_output,      # llama_count       <-- New
            status_output            # status_message
            ]
    )

# --- Launch the Gradio App ---
if __name__ == "__main__":
    print("Checking required libraries...")
    try:
        import tiktoken
        print("- tiktoken found.")
    except ImportError:
        print("WARNING: 'tiktoken' not found. GPT-4 visualization will fail. Install with: pip install tiktoken")
    try:
        import transformers
        import sentencepiece
        print("- transformers found.")
        print("- sentencepiece found.")
    except ImportError:
         print("WARNING: 'transformers' or 'sentencepiece' not found. Llama 3 visualization will fail. Install with: pip install transformers sentencepiece")

    if BLT_AVAILABLE:
        print("- Bytelatent libraries found.")
        # Ensure bytelatent model is present only if library is available
        try:
            print("Ensuring Bytelatent model 'blt-1b' weights are present...")
            ensure_present(["blt-1b"])
            print("Bytelatent model check complete.")
        except Exception as blt_dl_err:
            print(f"WARNING: Failed to ensure Bytelatent model presence: {blt_dl_err}")
    else:
        print("INFO: Bytelatent libraries not found, skipping related functionality.")

    print(f"Attempting to use Llama 3 Tokenizer: {LLAMA3_MODEL_NAME}. Ensure you have access (e.g., via `huggingface-cli login` if needed).")
    print("Launching Gradio interface...")
    iface.launch()