Spaces:
Running
Running
Visualisation working on CPU via CUDA_VISIBLE_DEVICE=-1 python demo_patcher.py 'Daenerys Targaryen is in Game of Thrones, a fantasy epic by George R.R. Martin.'
41ea791
import logging | |
import os | |
from typing import Tuple | |
import torch | |
from bytelatent.args import EvalArgs | |
from bytelatent.config_parser import parse_args_to_pydantic_model | |
from bytelatent.data.file_util import get_fs | |
from bytelatent.data.patcher import Patcher | |
from bytelatent.distributed import ( | |
DistributedArgs, | |
dist_max, | |
dist_min, | |
dist_sum, | |
get_device_mesh, | |
setup_torch_distributed, | |
) | |
from bytelatent.generate import load_consolidated_model_and_tokenizer | |
from bytelatent.model.blt import ByteLatentTransformer | |
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer | |
logger = logging.getLogger() | |
def get_max_length(input_tokens: list[list[int]] | None) -> int: | |
# reduce max length prompt over all processes to have an equal number of call on each process with fsdp | |
if input_tokens is None: | |
max_length = 0 | |
else: | |
max_length = max([len(t) for t in input_tokens]) | |
if torch.distributed.is_initialized(): | |
max_length = int(dist_max(max_length)) | |
return max_length | |
def get_min_length(input_tokens: list[list[int]] | None) -> int: | |
# reduce min length prompt over all processes to have an equal number of call on each process with fsdp | |
if input_tokens is None: | |
# TODO: Double check this change from int(1e9) is correct | |
min_length = 0 | |
else: | |
min_length = min([len(t) for t in input_tokens]) | |
if torch.distributed.is_initialized(): | |
min_length = int(dist_min(min_length)) | |
return min_length | |
def get_generation_range( | |
prompt_tokens: list[list[int]] | None, max_gen_len: int | |
) -> tuple[int, int]: | |
batch_min_prompt_length = get_min_length(prompt_tokens) | |
batch_max_prompt_length = get_max_length(prompt_tokens) | |
return batch_min_prompt_length, batch_max_prompt_length + max_gen_len | |
def sample_top_k(probs, k): | |
topk_value, _ = torch.topk(probs, k) # batch_sz x topk | |
min_value_top_k = topk_value[:, [-1]] | |
probs[probs < min_value_top_k] = 0.0 | |
probs.div_(probs.sum(dim=-1, keepdim=True)) | |
next_token = torch.multinomial(probs, num_samples=1) | |
return next_token | |
def sample_top_p(probs, p): | |
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) | |
probs_sum = torch.cumsum(probs_sort, dim=-1) | |
mask = probs_sum - probs_sort > p | |
probs_sort[mask] = 0.0 | |
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) | |
next_token = torch.multinomial(probs_sort, num_samples=1) | |
next_token = torch.gather(probs_idx, -1, next_token) | |
return next_token | |
def patcher_nocache( | |
prompts: list[str] | None, | |
*, | |
tokenizer: BltTokenizer, | |
patcher: Patcher, | |
max_prompt_len: int = 256, | |
max_gen_len: int = 256, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None: | |
assert ( | |
patcher.realtime_patching | |
), "generate_nocache requires patcher.realtime_patching=True" | |
if prompts is None: | |
prompt_tokens = None | |
n_truncated_prompts = 0 | |
total_truncated_prompts = 0 | |
else: | |
prompt_tokens = [tokenizer.encode(t, add_eos=False) for t in prompts] | |
n_truncated_prompts = sum([max_prompt_len < len(t) for t in prompt_tokens]) | |
if torch.distributed.is_initialized(): | |
total_truncated_prompts = dist_sum(n_truncated_prompts) | |
else: | |
total_truncated_prompts = n_truncated_prompts | |
# Truncation | |
prompt_tokens = [ | |
t if len(t) < max_prompt_len else t[len(t) - max_prompt_len :] | |
for t in prompt_tokens | |
] | |
if total_truncated_prompts > 0: | |
logger.info( | |
f"There are {total_truncated_prompts} prompts that are truncated on the left, " | |
f"length greater than max_prompt_len = {max_prompt_len}, " | |
f"maximum prompt length = {get_max_length(prompt_tokens)} across all gpus." | |
) | |
if prompt_tokens is None: | |
prompt_tokens = [[tokenizer.bos_id] for _ in range(end_pos)] | |
start_pos, end_pos = get_generation_range(prompt_tokens, max_gen_len) | |
batch_size = len(prompt_tokens) | |
tokens = torch.full((batch_size, end_pos), tokenizer.pad_id).to(patcher.device).long() | |
# Copy inputs to tensor for generated tokens | |
for i, row_tokens in enumerate(prompt_tokens): | |
tokens[i, : len(row_tokens)] = torch.tensor(row_tokens).long() | |
for i, curr_pos in enumerate(range(start_pos, end_pos)): | |
current_tokens = tokens[:, :curr_pos] | |
patch_lengths, scores = patcher.patch(current_tokens, include_next_token=False) | |
# insta return since not generating t+1 | |
return patch_lengths, scores, current_tokens | |
return None | |