Spaces:
Running
Running
File size: 7,466 Bytes
bcc039b b0956bd bcc039b b0956bd bcc039b 6ffeb66 bcc039b b0956bd f3e8125 b0956bd f3e8125 bcc039b 6ffeb66 bcc039b 6ffeb66 bcc039b 6ffeb66 bcc039b 0da051f bcc039b 0da051f bcc039b aebdc48 9d907fe aebdc48 9d907fe aebdc48 9d907fe aebdc48 9d907fe bcc039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import logging
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.distributed._tensor import Replicate, Shard
from torch.distributed.tensor.parallel import (
ColwiseParallel,
PrepareModuleInput,
RowwiseParallel,
SequenceParallel,
parallelize_module,
)
from torch.nn.attention.flex_attention import BlockMask, create_block_mask
from xformers.ops import AttentionBias
from bytelatent.base_transformer import (
BaseTransformer,
BaseTransformerArgs,
cross_entropy,
)
from bytelatent.model.utils import create_causal_mask
logger = logging.getLogger()
try:
from apex.normalization.fused_layer_norm import FusedRMSNorm
RMSNorm = FusedRMSNorm
except (ImportError, ModuleNotFoundError):
logging.debug("Apex not found. Using nn.RMSNorm")
RMSNorm = nn.RMSNorm
def attention_flops_per_token(n_layers, seq_len, dim, causal):
# Formula from https://github.com/Dao-AILab/flash-attention/blob/main/benchmarks/benchmark_flash_attention.py#L27-L30
return 3.5 * (4 * n_layers * seq_len * dim // (2 if causal else 1))
def get_num_flop_per_token(
num_non_embed_params: int, n_layers: int, dim: int, seq_len: int
) -> int:
return 6 * num_non_embed_params + attention_flops_per_token(
n_layers, seq_len, dim, True
)
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
class LMTransformerArgs(BaseTransformerArgs):
seed: int = 42
vocab_size: int = -1
weight_tying: bool = False
sliding_window: int | None = None
class LMTransformer(BaseTransformer):
def __init__(self, args: LMTransformerArgs):
super().__init__(args)
self.weight_tying = args.weight_tying
self.sliding_window = args.sliding_window
assert args.vocab_size > 0
self.tok_embeddings = torch.nn.Embedding(args.vocab_size, args.dim)
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
self.output = nn.Linear(
args.dim,
args.vocab_size,
bias=False,
)
if args.weight_tying:
self.output.weight = self.embeddings.tok_embeddings.weight
def forward(
self,
token_values: torch.Tensor,
target: Optional[torch.Tensor] = None,
tok_idx: Optional[torch.Tensor] = None,
mask: Optional[Union[BlockMask, AttentionBias, torch.Tensor, str]] = None,
attn_impl: str | None = None,
):
if attn_impl is None:
attn_impl = self.attn_impl
bsz, seqlen = token_values.shape
h = self.tok_embeddings(token_values)
mask = (
mask
if mask is not None
else create_causal_mask(
seqlen,
attn_impl,
self.attn_bias_type,
sliding_window=self.sliding_window,
tokens=token_values,
eos_id=self.eos_id,
)
)
h = super().forward(h, tok_idx=tok_idx, mask=mask, attn_impl=attn_impl)
logits = self.output(self.norm(h))
if target is not None:
return cross_entropy(logits, target)
else:
return logits
def reset_parameters(self, init_std=None):
self.norm.reset_parameters()
def init_weights(self):
self.reset_parameters()
init_std = self.dim ** (-0.5)
nn.init.trunc_normal_(
self.tok_embeddings.weight,
mean=0.0,
std=init_std,
a=-3 * init_std,
b=3 * init_std,
)
super().init_weights()
if not self.weight_tying:
nn.init.trunc_normal_(
self.output.weight,
mean=0.0,
std=init_std,
a=-3 * init_std,
b=3 * init_std,
)
# Optional policy for activation checkpointing. With None, we stick to the default (defined distributed.py: default_no_recompute_ops)
def get_no_recompute_ops():
return None
# Optional and only used for fully shard options (fsdp) is choose. Highly recommanded for large models
def build_fsdp_grouping_plan(model_args: LMTransformerArgs):
group_plan: Tuple[int, bool] = []
if isinstance(model_args, LMTransformerArgs):
group_plan.append(("tok_embeddings", False))
for i in range(model_args.n_layers):
group_plan.append((f"layers.{i}", False))
group_plan.append(("output", True))
else:
for i in range(model_args.n_layers_local_encoder):
group_plan.append((f"local_encoder.layers.{i}", False))
group_plan.append((f"local_encoder.cross_attn_layers.{i}", False))
for i in range(model_args.n_layers_local_decoder):
group_plan.append((f"local_decoder.layers.{i}", False))
group_plan.append((f"local_decoder.cross_attn_layers.{i}", False))
for i in range(model_args.n_layers_global):
group_plan.append((f"global_transformer.layers.{i}", False))
for i in range(len(model_args.encoder_hash_byte_group_size)):
group_plan.append((f"encoder_hash_tok_embedding.{i}", False))
return group_plan
# Optional and only used for model/tensor parallelism when tp_size > 1
def tp_parallelize(model, tp_mesh, model_args: LMTransformerArgs, distributed_args):
assert model_args.dim % distributed_args.tp_size == 0
assert model_args.vocab_size % distributed_args.tp_size == 0
assert model_args.n_heads % distributed_args.tp_size == 0
assert (model_args.n_kv_heads or 0) % distributed_args.tp_size == 0
assert model_args.n_heads % (model_args.n_kv_heads or 1) == 0
# Embedding layer tp
main_plan = {}
main_plan["tok_embeddings"] = ColwiseParallel(
input_layouts=Replicate(), output_layouts=Shard(1)
)
main_plan["norm"] = SequenceParallel()
main_plan["output"] = ColwiseParallel(
input_layouts=Shard(1), output_layouts=Replicate()
)
parallelize_module(
model,
tp_mesh,
main_plan,
)
# Attention layers tp
for layer in model.layers:
layer_plan = {}
layer_plan["attention"] = PrepareModuleInput(
input_layouts=(Shard(1), None),
desired_input_layouts=(Replicate(), None),
)
layer_plan["attention_norm"] = SequenceParallel()
layer_plan["attention.wq"] = ColwiseParallel()
layer_plan["attention.wk"] = ColwiseParallel()
layer_plan["attention.wv"] = ColwiseParallel()
layer_plan["attention.wo"] = RowwiseParallel(output_layouts=Shard(1))
# Feedforward layers tp
layer_plan["feed_forward"] = PrepareModuleInput(
input_layouts=(Shard(1),),
desired_input_layouts=(Replicate(),),
)
layer_plan["ffn_norm"] = SequenceParallel()
layer_plan["feed_forward.w1"] = ColwiseParallel()
layer_plan["feed_forward.w3"] = ColwiseParallel()
layer_plan["feed_forward.w2"] = RowwiseParallel(output_layouts=Shard(1))
parallelize_module(
layer,
tp_mesh,
layer_plan,
)
# Adjusting the number of heads and kv heads according to the tp size
attn_layer = layer.attention
attn_layer.n_heads = attn_layer.n_heads // distributed_args.tp_size
attn_layer.n_kv_heads = attn_layer.n_kv_heads // distributed_args.tp_size
|