Spaces:
Running
Running
File size: 31,719 Bytes
bcc039b fe45f69 bcc039b 7044771 bcc039b fe45f69 63913e4 bcc039b 82ab593 bcc039b 82ab593 afedb16 8c61ab5 7044771 ea1fc75 7044771 bcc039b fe45f69 bcc039b 7517ac2 bcc039b 7044771 bcc039b c79b1fd bcc039b 7622d28 bcc039b 7044771 bcc039b 7044771 bcc039b 7044771 bcc039b 7044771 bcc039b 7044771 bcc039b 7044771 bcc039b 7044771 bcc039b 7622d28 bcc039b 48e4ad0 bcc039b 7622d28 bcc039b afedb16 bcc039b 7517ac2 bcc039b 7517ac2 bcc039b 7622d28 bcc039b 7517ac2 bcc039b 63913e4 bcc039b 7517ac2 bcc039b afedb16 bcc039b afedb16 bcc039b 7622d28 bcc039b a6ed14f bcc039b 7622d28 bcc039b afedb16 bcc039b afedb16 bcc039b 7622d28 bcc039b 739dc71 bcc039b afedb16 bcc039b afedb16 bcc039b afedb16 bcc039b afedb16 bcc039b 7044771 fe45f69 7044771 bcc039b 7622d28 bcc039b fe45f69 7622d28 bcc039b 7622d28 bcc039b fe45f69 bcc039b fe45f69 c79b1fd bcc039b 7622d28 bcc039b fe45f69 8c61ab5 fe45f69 8c61ab5 fe45f69 8c61ab5 fe45f69 8c61ab5 fe45f69 8c61ab5 bcc039b fe45f69 8c61ab5 fe45f69 8c61ab5 fe45f69 bcc039b fe45f69 bcc039b 8c61ab5 fe45f69 bcc039b fe45f69 bcc039b fe45f69 bcc039b ea1fc75 bcc039b 7044771 bcc039b 7044771 bcc039b ea1fc75 bcc039b ea1fc75 bcc039b 82ab593 6ffeb66 bcc039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import gc
import logging
import math
import os
import sys
from contextlib import ExitStack
from copy import deepcopy
from dataclasses import asdict, dataclass
from timeit import default_timer as timer
from typing import Any, TypeVar
import numpy as np
import pyarrow
import torch
import torch.distributed
import torch.nn.functional
import torch.nn.functional as F
import wandb
import xformers.profiler
from torch.distributed._tensor import DTensor
from torch.distributed.checkpoint.stateful import Stateful
from torch.optim import lr_scheduler
from bytelatent.args import TrainArgs
from bytelatent.checkpoint import CheckpointManager, load_from_checkpoint
from bytelatent.config_parser import parse_args_to_pydantic_model
from bytelatent.data.file_util import get_fs
from bytelatent.data.iterators.abstract_iterator import get_state_and_refresh
from bytelatent.data.iterators.multiprocess_iterator import (
MultiprocessIterator,
MultiprocessIteratorState,
PersistType,
)
from bytelatent.data.iterators.packing_iterator import PackingIteratorState
from bytelatent.distributed import (
check_model_value_range,
clean_env,
dist_mean,
dist_sum,
get_device_mesh,
get_is_master,
get_world_size,
init_signal_handler,
parallelize_model,
requeue_slurm_job,
setup_env,
setup_torch_distributed,
to_py_num,
)
from bytelatent.eval import EVAL_FOLDER_NAME, launch_eval
from bytelatent.logger import init_logger
from bytelatent.metrics import GPUMemoryMonitor, MetricLogger, get_num_params
from bytelatent.model.blt import ByteLatentTransformer
from bytelatent.norms import fixed_clip_grad_norm_
from bytelatent.optim import build_optimizer
from bytelatent.probe import AutoProbeD
from bytelatent.profiling import maybe_run_profiler
from bytelatent.stool import StoolArgs, launch_job
from bytelatent.transformer import (
LMTransformer,
build_fsdp_grouping_plan,
get_no_recompute_ops,
get_num_flop_per_token,
tp_parallelize,
)
logger = logging.getLogger()
T = TypeVar("T")
def flatten_dict(d, parent_key="", sep="_"):
items = []
for k, v in d.items():
new_key = f"{parent_key}{sep}{k}" if parent_key else k
if isinstance(v, dict):
items.extend(flatten_dict(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
def get_iterator_state_name(iterator_state):
if isinstance(iterator_state, MultiprocessIteratorState):
return "multiprocess"
elif isinstance(iterator_state, PackingIteratorState):
return "packing"
else:
raise ValueError(f"Unsupported iterator to get name from: {iterator_state}")
# TODO: Make this pydantic based instead of data class based
# TODO: Generalize this to any iterator state
@dataclass
class TrainState(Stateful):
step: int # Nb of steps taken by the optimizer
acc_step: int # Nb of accumulation steps done since last optimizer step
scheduler: lr_scheduler.LambdaLR
data_loader_state: MultiprocessIteratorState | PackingIteratorState
scale: float = 1.0
data_loader_class: str | None = None
def state_dict(self) -> dict[str, Any]:
return {
"step": self.step,
"acc_step": self.acc_step,
"data_loader_state": self.data_loader_state.model_dump(),
"data_loader_class": get_iterator_state_name(self.data_loader_state),
"scheduler": self.scheduler.state_dict(),
}
def load_state_dict(self, state_dict):
self.step = state_dict["step"]
self.acc_step = state_dict["acc_step"]
self.data_loader_class = state_dict["data_loader_class"]
if self.data_loader_class == "multiprocess":
self.data_loader_state = MultiprocessIteratorState(
**state_dict["data_loader_state"]
)
elif self.data_loader_class == "packing":
self.data_loader_state = PackingIteratorState(
**state_dict["data_loader_state"]
)
else:
raise ValueError(f"invalid data loader class: {self.data_loader_class}")
self.scheduler.load_state_dict(state_dict["scheduler"])
def validate_train_args(args: TrainArgs, output_size: int):
assert args.model is not None or args.entropy_model is not None
if args.model is not None:
logger.info(f"Setting model output size to {args.model.vocab_size}")
args.model.vocab_size = output_size
assert (
args.model.max_encoder_seq_length == args.data.max_encoder_seq_length
), "max_encoder_seq_length for model and data should match"
if args.entropy_model is not None:
logger.info(f"Setting model output size to {args.entropy_model.vocab_size}")
args.entropy_model.vocab_size = output_size
assert args.dump_dir, "Dump dir not set"
if args.checkpoint.path is None:
logger.info(f"Setting checkpoint path to {args.checkpoint.path}")
args.checkpoint.path = os.path.join(args.dump_dir, "checkpoints")
if args.data.root_dir is not None:
data_fs = get_fs(args.data.root_dir, s3_profile=args.data.s3_profile)
for source in args.data.sources:
data_path = os.path.join(args.data.root_dir, source)
assert data_fs.exists(data_path), f"{data_path} doesn't exist"
args.distributed.configure_world()
if args.model is not None:
args.model.max_seqlen = args.data.seq_len
if args.entropy_model is not None:
args.entropy_model.max_seqlen = args.data.seq_len
if args.distributed.tp_size == 1:
logger.warning(
"Tensor parallelism has not been tested for a while, use at your own risk"
)
assert (
args.probe_freq != args.profiling.mem_steps
), "Don't profile during probe step"
assert (
args.probe_freq != args.profiling.profile_steps
), "Don't profile during probe step"
if args.logging.wandb is not None:
args.logging.wandb.name = args.name
if args.probe_freq is not None:
assert (
args.distributed.tp_size == 1
), "Probing not supported with tensor parallelism"
assert (
args.distributed.selective_activation_checkpointing is False
), "Probing not supported with selective activation checkpointing"
preemption_flag = dict(flag=False)
def set_preemption_flag(signum, frame):
logger.warning("Signal handler called with signal " + str(signum))
logger.warning("Preemption ! checkpointing asap and exiting.")
preemption_flag["flag"] = True
def every_n_steps(train_state, freq: int, acc_step=None, acc_freq=None):
if freq < 0:
return False
test = train_state.step % freq == 0
if acc_step is not None:
test = test and (train_state.acc_step == acc_step)
elif acc_freq is not None:
test = test and ((train_state.acc_step % acc_freq) == 0)
return test
def compute_loss(p, y, mask, scale):
tok_loss = scale * F.cross_entropy(
p.flatten(0, 1), y.flatten(0, 1), reduction="none"
)
if mask is None:
loss = tok_loss.mean()
else:
mask = mask.flatten(0, 1)
tok_loss = tok_loss * mask
loss = tok_loss.sum() / (mask.sum() + 1e-6)
return loss, tok_loss
def train(args: TrainArgs):
with ExitStack() as context_stack:
pyarrow.set_io_thread_count(4)
pyarrow.set_cpu_count(4)
tokenizer = args.data.tokenizer_args.build()
validate_train_args(
args,
tokenizer.get_vocab_size(),
)
dump_fs = get_fs(args.dump_dir, s3_profile=args.checkpoint.s3_profile)
if get_is_master():
dump_fs.mkdirs(args.dump_dir, exist_ok=True)
config_yaml_str = args.dump_to_yaml_str()
logging.info("TrainArgs: \n%s", config_yaml_str)
dump_fs.write_text(
os.path.join(args.dump_dir, "config.yaml"), config_yaml_str
)
init_logger(os.path.join(args.dump_dir, "train.log"), fs=dump_fs)
init_signal_handler(set_preemption_flag) # For handling preemption signals.
setup_env(args.env)
setup_torch_distributed(args.distributed)
world_mesh = get_device_mesh(args.distributed)
logger.info(f"Starting job: {args.name}")
# build dataloader
# need dp world size and rank
dp_mesh = world_mesh["dp_replicate"]
dp_degree = dp_mesh.size()
dp_rank = dp_mesh.get_local_rank()
if args.distributed.dp_shard > 1:
dp_rank = dp_rank * dp_degree + world_mesh["dp_shard"].get_local_rank()
dp_degree *= world_mesh["dp_shard"].size()
logger.info(f"Running on dp rank : {dp_rank}")
logger.info(f"Running on dp size : {dp_degree}")
torch.manual_seed(args.seed)
logger.info("Building model")
# Initializing Model in meta device allows us to initialize models much bigger than 1 gpu's memory
with torch.device("meta"):
if args.train_entropy_model:
assert args.entropy_model is not None
model = LMTransformer(args.entropy_model)
model_args = args.entropy_model
else:
assert args.model is not None
model = ByteLatentTransformer(args.model)
model_args = args.model
logger.info("Model is built !")
model_param_count = get_num_params(model)
model = parallelize_model(
model,
world_mesh,
model_args,
args.distributed,
fsdp_grouping_plan=build_fsdp_grouping_plan(model_args),
tp_parallelize=tp_parallelize,
no_recompute_ops=get_no_recompute_ops(),
)
# Once we shard the model on different gpus we can actually initialize the model
# First we create empty tensors of the correct shapes
model = model.to_empty(device="cuda")
# Then we init the model. Please make sure this function initializes *ALL* parameters
# and buffers, otherwise you will have random values in the unitialized tensors
# which will silently fail (give nan gradients for example)
if args.checkpoint.init_ckpt_path:
logger.info(f"Loading initial model from {args.checkpoint.init_ckpt_path}")
ckpt_fs = get_fs(
args.checkpoint.init_ckpt_path, s3_profile=args.checkpoint.s3_profile
)
load_from_checkpoint(
ckpt_fs, args.checkpoint.init_ckpt_path, model, model_key="model"
) # Put model_key="" if its directly the model checkpoint
model.rope_embeddings.reset_parameters() # For RoPe initialization since it's a buffer it might not be loaded
else:
with torch.random.fork_rng(devices=[torch.cuda.current_device()]):
torch.manual_seed(model_args.seed)
model.init_weights()
check_model_value_range(model, range=10.0, std=1.0)
# log model size
logger.info(model)
logger.info(f"Model size: {model_param_count:,} total parameters")
gpu_memory_monitor = GPUMemoryMonitor("cuda")
logger.info(
f"GPU capacity: {gpu_memory_monitor.device_name} ({gpu_memory_monitor.device_index}) "
f"with {gpu_memory_monitor.device_capacity_gib:.2f}GiB memory"
)
logger.info(f"GPU memory usage: {gpu_memory_monitor}")
# build optimizer after apply parallelisms to the model
optimizer, scheduler = build_optimizer(model, args.optim, args.steps)
data_loader = args.data.build_from_rank(dp_rank, dp_degree)
data_loader_state = data_loader.get_state()
train_state = TrainState(
step=0,
acc_step=0,
data_loader_state=data_loader_state,
scheduler=scheduler,
scale=1.0,
)
checkpoint = CheckpointManager.instantiate_and_make_dir(args.checkpoint)
checkpoint.load(model, optimizer, train_state, world_mesh)
# Either load from latest checkpoint or start from scratch
if args.probe_freq is not None:
# TODO: Convert this to fsspec compatible
if get_is_master():
os.makedirs(os.path.join(args.dump_dir, "probe"), exist_ok=True)
torch.distributed.barrier()
probe = AutoProbeD(
model,
(
os.path.join(args.dump_dir, "probe", f"probe.{dp_rank}.jsonl")
if (dp_rank % 128 == 0)
else None
),
)
probe_mod = model._orig_mod if args.distributed.compile else model
gc.disable()
# train loop
model.train()
metric_logger = context_stack.enter_context(
MetricLogger(os.path.join(args.dump_dir, "metrics.jsonl"), args, fs=dump_fs)
)
data_loader = train_state.data_loader_state.build()
batch_iterator = data_loader.create_iter()
torch_profiler = context_stack.enter_context(
maybe_run_profiler(args.dump_dir, model, args.profiling)
)
nwords_since_last_log = 0
time_last_log = timer()
gc.collect()
saved = False
step_losses: list[float] = []
step_tok_losses: list[float] = []
n_bytes: int = 0
while train_state.step < args.steps and (
args.max_steps is None or train_state.step < args.max_steps
):
# We constrain train_state.acc_step to be in range 0 to args.grad_acc_steps - 1
train_state.acc_step += 1
train_state.acc_step = train_state.acc_step % args.grad_acc_steps
# get batch
curr_lr = float(optimizer.param_groups[0]["lr"])
data_load_start = timer()
batch = next(batch_iterator)
batch_x = torch.from_numpy(
batch.x,
).cuda()
batch_y = torch.from_numpy(batch.y).cuda()
if batch.patch_lengths is None:
batch_patch_lengths = None
else:
batch_patch_lengths = torch.from_numpy(batch.patch_lengths).cuda()
mask = None if batch.mask is None else torch.from_numpy(batch.mask).cuda()
if args.data.tokenizer_args.name in ["bytes", "blt"]:
n_bytes += batch_y.numel() if mask is None else mask.sum()
elif args.data.tokenizer_args.name in ["sp", "tiktoken"]:
for example in batch.y:
target_tokens = tokenizer.decode(example.tolist(), cut_at_eos=False)
n_bytes += (
len(bytes(target_tokens, encoding="utf-8", errors="ignore"))
+ sum(example == tokenizer.eos_id)
+ sum(example == tokenizer.bos_id)
)
else:
raise ValueError(
f"Unexpected tokenizer to count n_bytes for: {args.data.tokenizer_args.name}"
)
if (
not args.train_entropy_model
and args.model.encoder_enable_byte_ngrams
and batch.ngram_ids is None
):
raise ValueError(
"Cannot enable byte ngrams and have batch.ngram_ids be None"
)
ngram_ids = (
None
if batch.ngram_ids is None
else torch.from_numpy(batch.ngram_ids).cuda()
)
if every_n_steps(train_state, args.gc_collect_freq, acc_step=0):
logger.info("garbage collection")
# we do garbage collection manually otherwise different processes
# run the GC at different times so they slow down the whole pipeline
gc.collect()
data_load_time = round(timer() - data_load_start, 4)
nwords_since_last_log += batch_x.numel()
bsz, seqlen = batch_y.shape
# forward
start_timer = torch.cuda.Event(enable_timing=True)
end_timer = torch.cuda.Event(enable_timing=True)
start_timer.record()
# This is an automatic probe that will compute statistics
# of all linears' inputs, weights and outputs
# along with attention logits and entropy
# both in forward and backward pass
tok_loss = None
if (args.probe_freq is not None) and every_n_steps(
train_state, args.probe_freq, acc_step=1 % args.grad_acc_steps
):
# Here we do a fake forward and backward pass on a smaller
# batch size to avoid OOM
# This assumes the model has no stateful layers (batch norm..)
assert (
next(probe_mod.parameters()).grad is None
), "Can't probe model if grads are not reset"
with probe:
probe.metadata = {
"it": train_state.step,
"global_step": train_state.step,
"loop": "lingua",
}
# Non compiled model uses roughly 2x memory in our exps
# So we divide bsz by 2 or seqlen by 2
probe_bsz = max(1, bsz // 2)
probe_seq = seqlen if (bsz // 2 >= 1) else (seqlen // 2)
probe_loss = probe_mod(
batch_x[:probe_bsz, :probe_seq],
batch_y[:probe_bsz, :probe_seq],
)
probe_loss.backward()
# We zero grads to cancel this fake step
optimizer.zero_grad()
assert (
next(probe_mod.parameters()).grad is None
), "Probe model shouldn't have grads at this point"
if args.train_entropy_model:
pred = model(batch_x)
else:
pred = model(
batch_x, patch_lengths=batch_patch_lengths, ngram_ids=ngram_ids
)
loss, tok_loss = compute_loss(pred, batch_y, mask, train_state.scale)
# We scale loss with grad_acc_steps so the gradient is the same
# regardless of grad_acc_steps
loss = loss / args.grad_acc_steps
# backward on scaled loss to create scaled gradients
loss.backward()
# For logging we undo that scaling
loss = loss.detach() * args.grad_acc_steps
# Undo loss scaling so downstream down't need to worry about it
step_losses.append((loss / train_state.scale).item())
step_tok_losses.append(tok_loss / train_state.scale)
world_size = get_world_size()
if 1 < world_size <= 8:
# For some reason, there are errors in reduces due to
# not working for non-bf16 numbers. This function is a patched
# version that converts gradients to bf16 before computing norms.
# The error only happens in distributed training on one node,
# hence the guard
grad_norm = fixed_clip_grad_norm_(
model.parameters(), max_norm=args.optim.clip, foreach=True
)
else:
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), max_norm=args.optim.clip, foreach=True
)
grad_norm = (
grad_norm.full_tensor() if isinstance(grad_norm, DTensor) else grad_norm
).item()
# optimizer step
if train_state.acc_step == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
train_state.step += 1
# updates the scale for next iteration
# training iteration complete
end_timer.record()
torch.cuda.synchronize()
curr_iter_time = round(start_timer.elapsed_time(end_timer) * 1e-3, 4)
# if profiler is active
if torch_profiler:
xformers.profiler.step()
# log metrics
if every_n_steps(
train_state,
args.logging.freq,
acc_step=None if args.logging.acc_freq else 0,
acc_freq=args.logging.acc_freq,
):
time_delta = timer() - time_last_log
wps = nwords_since_last_log / (time_delta * args.distributed.tp_size)
gpu_mem_stats = gpu_memory_monitor.get_peak_stats()
total_acc_steps = (
args.grad_acc_steps * train_state.step + train_state.acc_step
)
tokens_per_gpu = (
total_acc_steps * args.data.batch_size * args.data.seq_len
)
total_tokens = dp_degree * tokens_per_gpu
# This is an estimate and the correct values may change
# if you change the architecture
# Use xformer's analyze profile trace to get actual measurement
FLOPS = (
get_num_flop_per_token(
model_param_count - model_args.vocab_size * model_args.dim,
model_args.n_layers,
model_args.dim,
args.data.seq_len,
)
* wps
)
# Below, semantics are:
# per_gpu: Metrics on a given rank
# across_gpus: Metrics averaged/summed across all ranks
# step: Metric at a step
# interval: Metric averaged/summed across all steps since the last log interval.
# Typically, this is 10
step_loss_per_gpu = loss
step_loss_across_gpus = dist_mean(step_loss_per_gpu)
interval_loss_per_gpu = np.mean(step_losses)
interval_loss_across_gpus = dist_mean(interval_loss_per_gpu)
stacked_tok_loss = torch.cat(step_tok_losses, dim=0)
interval_total_tok_loss_per_gpu = stacked_tok_loss.sum()
interval_total_tok_loss_across_gpus = dist_sum(
interval_total_tok_loss_per_gpu, reduce_dtype=torch.bfloat16
)
interval_total_n_bytes_per_gpu = n_bytes
interval_total_n_bytes_across_gpus = dist_sum(
n_bytes, reduce_dtype=torch.bfloat16
)
interval_bpb_per_gpu = (
interval_total_tok_loss_per_gpu
/ math.log(2)
/ interval_total_n_bytes_per_gpu
)
interval_bpb_across_gpus = (
interval_total_tok_loss_across_gpus
/ math.log(2)
/ interval_total_n_bytes_across_gpus
)
metric_dict = {
"global_step": train_state.step,
"acc_step": train_state.acc_step,
"speed": {
"wps": wps,
"FLOPS": FLOPS,
"curr_iter_time": curr_iter_time,
"data_load_time": data_load_time,
},
"optim": {
"grad_norm": grad_norm,
"lr": curr_lr,
"total_tokens": total_tokens,
},
"memory": gpu_mem_stats._asdict(),
"loss": {
"step_per_gpu": to_py_num(step_loss_per_gpu),
"step_across_gpu": to_py_num(step_loss_across_gpus),
"interval_per_gpu": to_py_num(interval_loss_per_gpu),
"interval_across_gpu": to_py_num(interval_loss_across_gpus),
},
"bpb": {
"interval_per_gpu": to_py_num(interval_bpb_per_gpu),
"interval_across_gpus": to_py_num(interval_bpb_across_gpus),
},
"n_bytes": {
"interval_per_gpu": to_py_num(interval_total_n_bytes_per_gpu),
"interval_across_gpus": to_py_num(
interval_total_n_bytes_across_gpus
),
},
}
metrics = flatten_dict(
metric_dict,
sep="/",
)
if get_is_master():
metric_logger.log(metrics)
# Below semantics are:
# step=Metrics at a step
# interval=Metrics averaged across the logging interval
# local=On one rank
# global=Across all ranks
logger.info(
f"step: {train_state.step}"
f" acc: {train_state.acc_step}"
f" loss_gpu: {round(to_py_num(interval_loss_per_gpu), 4):>7}"
f" loss_avg: {round(to_py_num(interval_loss_across_gpus), 4):>7}"
f" bpb_gpu: {interval_bpb_per_gpu:3f}"
f" bpb_avg: {interval_bpb_across_gpus:3f}"
f" grad: {grad_norm:.2e}"
f" flops: {FLOPS:.2e}"
f" wps: {wps:.2e}"
f" iter: {curr_iter_time:>7}"
f" data: {data_load_time:>5}"
f" lr: {curr_lr:.2e}"
f" n_bytes_gpu: {int(interval_total_n_bytes_per_gpu)}"
f" n_bytes_sum: {int(interval_total_n_bytes_across_gpus)}"
f" mem: {gpu_mem_stats.max_active_pct:.0f}%"
f" pow: {gpu_mem_stats.power_draw/1000} W"
)
n_bytes = 0
step_losses = []
step_tok_losses = []
gpu_memory_monitor.reset_peak_stats()
nwords_since_last_log = 0
time_last_log = timer()
if every_n_steps(
train_state, args.checkpoint.dump.every, acc_step=0
) or every_n_steps(train_state, args.checkpoint.eval.every, acc_step=0):
if (
args.data.load_async
and args.data.async_persist_type == PersistType.EXACT
):
train_state.data_loader_state, data_loader, batch_iterator = (
get_state_and_refresh(data_loader)
)
else:
train_state.data_loader_state = data_loader.get_state()
saved = checkpoint.save(
model,
optimizer,
train_state,
args,
device_mesh=world_mesh,
)
if args.eval is not None and every_n_steps(
train_state, args.checkpoint.eval.every, acc_step=0
):
eval_args = args.eval
eval_args.global_step = train_state.step
eval_args.ckpt_dir = str(checkpoint.existing_saves[-1])
eval_args.dump_dir = os.path.join(
args.dump_dir,
"evals",
EVAL_FOLDER_NAME.format(train_state.step),
)
eval_args.metric_log_dir = args.dump_dir
if args.async_eval_gpus is None:
launch_eval(eval_args)
elif get_is_master():
if wandb.run is not None and args.logging.wandb is not None:
eval_args.wandb = deepcopy(args.logging.wandb)
assert args.async_eval_gpus > 0
logger.info(f"Launching evals on {args.async_eval_gpus} gpus")
with clean_env():
launch_job(
StoolArgs(
asdict(eval_args),
script="apps.main.eval",
copy_code=False,
nodes=args.async_eval_gpus // 8,
qos="lowest",
)
)
if preemption_flag["flag"]:
if not saved:
if (
args.data.load_async
and args.data.async_persist_type == PersistType.EXACT
):
train_state.data_loader_state, data_loader, batch_iterator = (
get_state_and_refresh(data_loader)
)
else:
train_state.data_loader_state = data_loader.get_state()
checkpoint.save(
model,
optimizer,
train_state,
args,
device_mesh=world_mesh,
)
requeue_slurm_job()
sys.exit(0)
if not saved:
if (
args.data.load_async
and args.data.async_persist_type == PersistType.EXACT
):
train_state.data_loader_state, data_loader, batch_iterator = (
get_state_and_refresh(data_loader)
)
else:
train_state.data_loader_state = data_loader.get_state()
checkpoint.save(
model,
optimizer,
train_state,
args,
device_mesh=world_mesh,
)
if isinstance(data_loader, MultiprocessIterator):
logger.info("Closing MP iterator before exiting")
data_loader.shutdown()
gc.collect()
def main():
"""
The command line interface here uses OmegaConf https://omegaconf.readthedocs.io/en/2.3_branch/usage.html#from-command-line-arguments
This accepts arguments as a dot list
So if the dataclass looks like
@dataclass
class DummyArgs:
name: str
model: LMTransformerArgsgs
@dataclass
class LMTransformerArgsgs:
dim: int
Then you can pass model.dim=32 to change values in LMTransformerArgsgs
or just name=tictac for top level attributes.
The behavior here is as follows:
1. We instantiate TrainArgs with its default values
2. We override those default values with the ones in the provided config file
3. We override the result with the additional arguments provided through command line
For example, if the config is the following
model:
dim: 128
n_layers: 4
and you call train.py with train.py model.dim=64
Then the final TrainArgs will have
model:
dim: 64
n_layers: 4
Plus all the default values in TrainArgs dataclass.
"""
train_args = parse_args_to_pydantic_model(TrainArgs)
if train_args.debug_dynamo:
import torch._dynamo
torch._dynamo.config.suppress_errors = True
train(train_args)
if __name__ == "__main__":
main()
|