File size: 7,411 Bytes
bcc039b
 
 
 
 
 
 
 
 
936d943
bcc039b
 
6fbaf72
 
 
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fbaf72
bcc039b
 
 
 
 
 
 
 
9bd51df
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fbaf72
 
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fbaf72
bcc039b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (c) Meta Platforms, Inc. and affiliates.

import json
import os
import shutil
import subprocess
from typing import Any, Dict

from omegaconf import OmegaConf
from pydantic import BaseModel


class StoolArgs(BaseModel):
    name: str = None
    dump_dir: str = None
    config: Any = None
    launcher: str = "sbatch"  # Can be sbatch or bash if already in salloc
    script: str = "apps.main.train"  # The script to run.
    copy_code: bool = True  # Wether to copy code to dump dir
    dirs_exists_ok: bool = (
        False  # Wether to copy new code and config and run regardless that dir exists
    )
    override: bool = False  # Wether to delete dump dir and restart
    nodes: int = -1  # The number of nodes to run the job on.
    ngpu: int = 8  # The number of GPUs required per node.
    ncpu: int = 16  # The number of CPUs allocated per GPU.
    mem: str = ""  # The amount of memory to allocate.
    anaconda: str = "default"  # The path to the anaconda environment.
    constraint: str = ""  # The constraint on the nodes.
    exclude: str = ""  # The nodes to exclude.
    time: int = -1  # The time limit of the job (in minutes).
    account: str = ""
    qos: str = ""
    partition: str = "learn"
    stdout: bool = False


SBATCH_COMMAND = """#!/bin/bash

{exclude}
{qos}
{account}
{constraint}
#SBATCH --job-name={name}
#SBATCH --nodes={nodes}
#SBATCH --gres=gpu:{ngpus}
#SBATCH --cpus-per-gpu={ncpu}
#SBATCH --time={time}
#SBATCH --partition={partition}
#SBATCH --mem={mem}

#SBATCH --output={dump_dir}/logs/%j/%j.stdout
#SBATCH --error={dump_dir}/logs/%j/%j.stderr

#SBATCH --open-mode=append
#SBATCH --signal=USR2@120
#SBATCH --distribution=block

# Mimic the effect of "conda init", which doesn't work for scripts
eval "$({conda_exe} shell.bash hook)"
source activate {conda_env_path}

{go_to_code_dir}

export OMP_NUM_THREADS=1
export LAUNCH_WITH="SBATCH"
export DUMP_DIR={dump_dir}
srun {log_output} -n {tasks} -N {nodes_per_run} python -u -m {script} config=$DUMP_DIR/base_config.yaml dump_dir=$DUMP_DIR name={name}
"""


def copy_dir(input_dir: str, output_dir: str) -> None:
    print(f"Copying : {input_dir}\n" f"to      : {output_dir} ...")
    assert os.path.isdir(input_dir), f"{input_dir} is not a directory"
    assert os.path.isdir(output_dir), f"{output_dir} is not a directory"
    rsync_cmd = (
        f"rsync -rmt --copy-links "
        f"--include '**/' "
        f"--include '*.py' "
        f"--exclude='*' "
        f"{input_dir}/ {output_dir}"
    )
    print(f"Copying command: {rsync_cmd}")
    subprocess.call([rsync_cmd], shell=True)
    print("Copy done.")


def retrieve_max_time_per_partition() -> Dict[str, int]:
    # retrieve partition max times (a bit slow)

    sinfo = json.loads(subprocess.check_output("sinfo --json", shell=True))["sinfo"]
    max_times: Dict[str, int] = {}

    for info in sinfo:
        if info["partition"]["maximums"]["time"]["infinite"]:
            max_times[info["partition"]["name"]] = 14 * 24 * 60  # 14 days
        else:
            max_times[info["partition"]["name"]] = info["partition"]["maximums"][
                "time"
            ][
                "number"
            ]  # in minutes

    return max_times


def validate_args(args) -> None:
    # Set maximum time limit if not specified
    if args.time == -1:
        max_times = retrieve_max_time_per_partition()
        args.time = max_times.get(
            args.partition, 3 * 24 * 60
        )  # Default to 3 days if not found
        print(
            f"No time limit specified, using max time for partitions: {args.time} minutes"
        )

    if args.constraint:
        args.constraint = f"#SBATCH --constraint={args.constraint}"

    if args.account:
        args.account = f"#SBATCH  --account={args.account}"

    if args.qos:
        args.qos = f"#SBATCH --qos={args.qos}"

    if getattr(args, "exclude", ""):
        args.exclude = f"#SBATCH --exclude={args.exclude}"

    if hasattr(args, "anaconda") and args.anaconda:
        if args.anaconda == "default":
            args.anaconda = (
                subprocess.check_output("which python", shell=True)
                .decode("ascii")
                .strip()
            )
        else:
            args.anaconda = f"{args.anaconda}/bin/python"
        assert os.path.isfile(args.anaconda)

    args.mem = args.mem or "0"

    assert args.partition
    assert args.ngpu > 0
    assert args.ncpu > 0
    assert args.nodes > 0
    assert args.time > 0
    assert args.partition


def launch_job(args: StoolArgs):
    # Set up args default and validate them depending on the cluster or partition requested
    validate_args(args)
    job_name = args.name or args.config["name"]
    dump_dir = os.path.join(args.dump_dir, job_name) or args.config["dump_dir"]
    print("Creating directories...")
    os.makedirs(dump_dir, exist_ok=args.dirs_exists_ok or args.override)
    if args.override:
        confirm = input(
            f"Are you sure you want to delete the directory '{dump_dir}'? This action cannot be undone. (yes/no): "
        )
        if confirm.lower() == "yes":
            shutil.rmtree(dump_dir)
            print(f"Directory '{dump_dir}' has been deleted.")
        else:
            print("Operation cancelled.")
            return
    if args.copy_code:
        os.makedirs(f"{dump_dir}/code", exist_ok=args.dirs_exists_ok)
        print("Copying code ...")
        copy_dir(os.getcwd(), f"{dump_dir}/code")

    print("Saving config file ...")
    with open(f"{dump_dir}/base_config.yaml", "w") as cfg:
        cfg.write(OmegaConf.to_yaml(args.config))

    conda_exe = os.environ.get("CONDA_EXE", "conda")
    conda_env_path = os.path.dirname(os.path.dirname(args.anaconda))
    log_output = (
        "-o $DUMP_DIR/logs/%j/%j_%t.out -e $DUMP_DIR/logs/%j/%j_%t.err"
        if not args.stdout
        else ""
    )
    sbatch = SBATCH_COMMAND.format(
        name=job_name,
        script=args.script,
        dump_dir=dump_dir,
        nodes=args.nodes,
        tasks=args.nodes * args.ngpu,
        nodes_per_run=args.nodes,
        ngpus=args.ngpu,
        ncpu=args.ncpu,
        mem=args.mem,
        qos=args.qos,
        account=args.account,
        constraint=args.constraint,
        exclude=args.exclude,
        time=args.time,
        partition=args.partition,
        conda_exe=conda_exe,
        conda_env_path=conda_env_path,
        log_output=log_output,
        go_to_code_dir=f"cd {dump_dir}/code/" if args.copy_code else "",
    )

    print("Writing sbatch command ...")
    with open(f"{dump_dir}/submit.slurm", "w") as f:
        f.write(sbatch)

    print("Submitting job ...")
    os.system(f"{args.launcher} {dump_dir}/submit.slurm")

    print("Done.")


if __name__ == "__main__":
    """
    The command line interface here uses OmegaConf https://omegaconf.readthedocs.io/en/2.3_branch/usage.html#from-command-line-arguments
    This accepts arguments as a dot list
    So if the dataclass looks like

    @dataclass
    class DummyArgs:
        name: str
        mode: LMTransformerArgs

    @dataclass
    class LMTransformerArgs:
        dim: int

    Then you can pass model.dim=32 to change values in LMTransformerArgs
    or just name=tictac for top level attributes.
    """
    args = OmegaConf.from_cli()
    args.config = OmegaConf.load(args.config)
    args = StoolArgs.model_validate(args)
    launch_job(args)