Spaces:
Running
Running
File size: 23,982 Bytes
bcc039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This file from the xFormers repo is just a example of how to implement
# probing of the activations of a model, without changing anything.
# By default, the linear inputs/outputs/gradients are logged, as well as
# the attention logits+entropy. It is possible to log an additional tensor, eg:
# x = log_stats(x, "name")
#
# Known limitations:
# * Only a subset of the attention biases is supported
# * Torch-compile is disabled automatically when this is enabled
# * Only tested with bf16/f16/f32 datatypes
import contextlib
import functools
import json
import math
import os
import uuid
from collections import defaultdict
from enum import Enum
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointImpl,
checkpoint_wrapper,
)
from torch.fx.operator_schemas import normalize_function
from torch.nn.attention import SDPBackend, sdpa_kernel
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_map
from torch.utils.module_tracker import ModuleTracker
from xformers.ops import fmha
@torch.library.custom_op("torchprobe::log", mutates_args=(), device_types=None)
def _log(x: torch.Tensor, name: str, uid: str) -> None:
pass
@_log.register_fake
def _log_fake(x: torch.Tensor, name: str, uid: str) -> None:
pass
class _LogStats(torch.autograd.Function):
@staticmethod
def forward(ctx, x: torch.Tensor, name: str):
uid = str(uuid.uuid4())
torch.ops.torchprobe.log(x, name, uid)
ctx.name = name
ctx.uid = uid
return x
@staticmethod
def backward(ctx, grad: torch.Tensor):
torch.ops.torchprobe.log(grad, f"{ctx.name}.g", ctx.uid)
return grad, None
_PROBING_ENABLED = False
def log_stats(x: torch.Tensor, name: str) -> torch.Tensor:
if not _PROBING_ENABLED:
return x
return _LogStats.apply(x, name)
QUANTILES = [
0.0000001,
0.000001,
0.00001,
0.0001,
0.001,
0.01,
0.05,
0.1,
0.3,
0.5,
0.7,
0.9,
0.95,
0.99,
0.999,
0.9999,
0.99999,
0.999999,
0.9999999,
]
@functools.cache
def _get_quantiles(device: torch.device, dtype) -> torch.Tensor:
return torch.tensor(QUANTILES, device=device, dtype=dtype)
def _get_stats(x_: torch.Tensor, remove_inf=False) -> Dict[str, Any]:
if x_.dtype not in [torch.float, torch.double, torch.float16, torch.bfloat16]:
return {}
x = x_.flatten()
if remove_inf:
x = x[x.abs() < float("inf")]
if x.dtype is not torch.double:
x = x.float()
xabs = x.abs()
quantiles = _get_quantiles(x.device, x.dtype)
mean = x.mean()
std = x.std()
return {
"shape": tuple(x_.shape),
"mean": mean,
"std": std,
"skew": (((x - mean) / std) ** 3).double().mean(),
"kurtosis": (((x - mean) / std) ** 4).double().mean(),
"abs.mean": xabs.mean(),
"max": x.max(),
"min": x.min(),
# Note: `quantile` takes at most 2**24 elements, see
# https://github.com/pytorch/pytorch/issues/64947
"quantiles": torch.quantile(x[: 2**24], quantiles),
}
def _mask_attn_causal_inplace(logits: torch.Tensor, q_idx, q_len, kv_len) -> None:
assert logits.ndim == 4
logits[:, :, :, q_idx + kv_len - q_len + 1 :] = -math.inf
def _mask_attn_logits(
logits: torch.Tensor,
q_idx: List[int],
*,
causal: bool,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_k: Optional[torch.Tensor] = None,
) -> torch.Tensor:
assert logits.dtype is torch.float32
# Handle BlockDiagonalMask
if cu_seqlens_q is not None:
assert cu_seqlens_k is not None
# Expect BHMqMkv
assert logits.ndim == 4, logits.shape
qs = cu_seqlens_q.tolist()
ks = cu_seqlens_k.tolist()
q_batchid = []
k_batchid = [-2] * logits.shape[-1]
q_idx_i = 0
for bid, (q0, q1, k0, k1) in enumerate(zip(qs, qs[1:], ks, ks[1:])):
for k in range(k0, k1):
k_batchid[k] = bid
while q_idx_i < len(q_idx) and q_idx[q_idx_i] < q1:
q_batchid.append(bid)
if causal:
_mask_attn_causal_inplace(
logits[:, :, q_idx_i : q_idx_i + 1, k0:k1],
q_idx[q_idx_i] - q0,
q1 - q0,
k1 - k0,
)
q_idx_i += 1
mask_out = (
torch.tensor(q_batchid, device=logits.device)[None, None, :, None]
!= torch.tensor(k_batchid, device=logits.device)[None, None, None, :]
)
logits[mask_out.expand_as(logits)] = -math.inf
assert q_idx_i == len(q_idx)
elif causal:
for q_idx_i in range(len(q_idx)):
_mask_attn_causal_inplace(
logits[:, :, q_idx_i : q_idx_i + 1, :],
q_idx[q_idx_i],
logits.shape[2],
logits.shape[3],
)
return logits
def _attn_queries_subset(num_queries: int) -> List[int]:
return list(range(0, num_queries, max(1, num_queries // 128)))
@torch.no_grad()
def _compute_attn_stats_sdpa(
probe,
path: str,
# supports arguments both cudnn + flash backends
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask=None,
attn_bias=None,
dropout_p=0.0,
is_causal=False,
scale=None,
compute_log_sumexp=True,
return_debug_mask=False,
**kwargs,
):
if scale is None:
scale = 1 / (query.shape[-1] ** 0.5)
# Filter-out not supported cases
if attn_mask is not None or attn_bias is not None or dropout_p != 0.0 or kwargs:
probe.store[f"{path}::attn"] = {
"query.shape": tuple(query.shape),
"key.shape": tuple(key.shape),
"value.shape": tuple(value.shape),
"attn_mask": attn_mask.shape if attn_mask is not None else None,
"dropout_p": dropout_p,
"is_causal": is_causal,
"scale": scale,
"unk_kwargs": list(kwargs.keys()),
}
return
# Take a subset of the queries and compute the logits
query_s = _attn_queries_subset(query.shape[-2])
logits = query[:, :, query_s] @ key.transpose(-1, -2) * scale
logits = _mask_attn_logits(logits.float(), query_s, causal=is_causal)
p = logits.float().softmax(-1)
masked_logsoft = logits.log_softmax(-1).where(
(logits > -math.inf), torch.zeros_like(logits)
)
entropy = -(p * masked_logsoft).sum(-1)
probe.log_tensor(f"{path}::attn_entropy", entropy)
probe.log_tensor(f"{path}::attn_logits", logits, remove_inf=True)
@torch.no_grad()
def _compute_attn_stats_flash(
probe,
path: str,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
cu_seqlens_q: Optional[torch.Tensor],
cu_seqlens_k: Optional[torch.Tensor],
seqused_k: Optional[torch.Tensor],
max_seqlen_q: int,
max_seqlen_k: int,
p: float,
softmax_scale: float,
is_causal: bool,
window_left: int,
window_right: int,
return_softmax: bool,
block_tables: Optional[torch.Tensor],
unpadded_lse: bool = False,
) -> None:
# Filter-out not supported cases
if (
seqused_k is not None
or p != 0.0
or window_left >= 0
or window_right >= 0
or block_tables is not None
):
probe.store[f"{path}::attn"] = {
"query.shape": tuple(query.shape),
"key.shape": tuple(key.shape),
"value.shape": tuple(value.shape),
"op": "flash",
}
return
if cu_seqlens_q is not None:
assert query.ndim == 3, query.shape
query, key, value = query[None], key[None], value[None]
assert query.ndim == 4, query.shape
# Take a subset of the queries and compute the logits
query_s = _attn_queries_subset(query.shape[1])
logits = (
query[:, query_s].transpose(1, 2)
@ key.transpose(1, 2).transpose(-1, -2)
* softmax_scale
)
logits = _mask_attn_logits(
logits.float(),
query_s,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
causal=is_causal,
)
p = logits.float().softmax(-1)
masked_logsoft = logits.log_softmax(-1).where(
(logits > -math.inf), torch.zeros_like(logits)
)
entropy = -(p * masked_logsoft).sum(-1)
probe.log_tensor(f"{path}::attn_entropy", entropy)
probe.log_tensor(f"{path}::attn_logits", logits, remove_inf=True)
def _tensors_to_python(x):
if not isinstance(x, torch.Tensor):
return x
return x.tolist()
# class syntax
class LinearBwType(Enum):
DW = 1
DX = 2
UNKNOWN = 3
class AutoProbeD(TorchDispatchMode):
def __init__(self, module: nn.Module, write_file: Optional[str] = None) -> None:
self.write_file = Path(write_file) if write_file is not None else None
self.write_tensors_tmpdir: Optional[Path] = None
self.compile_disabler = TorchCompileDisabler(module)
self.mod_tracker = ModuleTracker()
self.count_per_path: Dict[str, int] = defaultdict(int)
self.store: Dict[str, Dict[str, Any]] = {}
self.linear_data: Dict[str, Tuple[Any, Any, Any, Any, Any]] = {}
self.uid_to_path: Dict[str, str] = {}
self.metadata: Any = None
self.enabled = False
self.verbose = bool(int(os.environ.get("PROBE_VERBOSE", "0")))
def __enter__(self):
global _PROBING_ENABLED
assert not self.enabled, "Entered probe twice"
self.compile_disabler.__enter__()
self.mod_tracker.__enter__()
super().__enter__()
self.enabled = True
_PROBING_ENABLED = True
# self._setup_tensors_logging()
return self
def __exit__(self, *args) -> None:
global _PROBING_ENABLED
assert self.enabled, "Exiting probe without entering it"
super().__exit__(*args)
self.mod_tracker.__exit__(*args)
self.compile_disabler.__exit__(*args)
self._flush_and_clear()
_PROBING_ENABLED = False
self.enabled = False
def _setup_tensors_logging(self):
if self.write_file is not None:
self.write_file.parent.mkdir(exist_ok=True)
self.write_tensors_tmpdir = (
self.write_file.parent
/ f"{self.write_file.name}-tmp-{str(uuid.uuid4())[:8]}"
)
self.write_tensors_tmpdir.mkdir(exist_ok=True)
def _flush_and_clear(self) -> None:
if self.write_file is not None:
dump_data = tree_map(_tensors_to_python, self.store)
with self.write_file.open("a") as fd:
json.dump(
{
"data": dump_data,
"meta": self.metadata,
"version": 2,
"quantiles": QUANTILES,
},
fd,
)
fd.write("\n")
if self.write_tensors_tmpdir is not None:
assert self.write_file is not None
dump_dir = self.write_tensors_tmpdir.parent / f"{self.write_file.name}-dump"
dump_dir.mkdir(exist_ok=True)
dir_name = ""
if "it" in self.metadata:
dir_name = f"it{int(self.metadata['it']):010}"
if dir_name == "" or (dump_dir / dir_name).exists():
num_files = len(list(dump_dir.glob(f"{dir_name}v*")))
dir_name = f"{dir_name}v{num_files}"
dump_dir = dump_dir / dir_name
assert not dump_dir.exists()
self.write_tensors_tmpdir.rename(dump_dir)
self.write_tensors_tmpdir = None
self.store.clear()
self.count_per_path.clear()
self.uid_to_path.clear()
def _find_bw_path_and_type(
self, path: str, out: torch.Tensor, args
) -> Tuple[str, LinearBwType]:
"""
We are in the BW pass, and process a GEMM.
Let's figure out:
(1) The path for the FW pass (might differ in case of ModuleTracker bug)
(2) The type of BW pass (eg `dw` or `dx`)
"""
def _is_path_correct_dw(path: str) -> bool:
# dW.t = dY.t @ X
in_shape, w_shape, out_shape, input_sm, weight_sm = self.linear_data[path]
return out.shape == (w_shape[1], w_shape[0]) and torch.allclose(
input_sm, args[1][:4, :4]
)
def _is_path_correct_dx(path: str) -> bool:
# dX = dY @ W.t
in_shape, w_shape, out_shape, input_sm, weight_sm = self.linear_data[path]
return out.shape == in_shape and torch.allclose(weight_sm, args[1][:4, :4])
if path in self.linear_data:
if _is_path_correct_dw(path):
return path, LinearBwType.DW
if _is_path_correct_dx(path):
return path, LinearBwType.DX
for candidate_path in self.mod_tracker.parents:
if candidate_path not in self.linear_data:
continue
if _is_path_correct_dw(candidate_path):
return candidate_path, LinearBwType.DW
if _is_path_correct_dx(candidate_path):
return candidate_path, LinearBwType.DX
return path, LinearBwType.UNKNOWN
def log_tensor(self, name: str, x: torch.Tensor, **kwargs) -> None:
self.store[name] = _get_stats(x, **kwargs)
if self.write_tensors_tmpdir is not None:
name_safe = name.replace("::", "__").replace("/", "")
torch.save(x, self.write_tensors_tmpdir / f"{name_safe}.pkl")
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
kwargs = kwargs if kwargs else {}
path = None
# Find longest path
for p in self.mod_tracker.parents:
if p == "Global":
continue
if path is None or len(p) > len(path):
path = p
if path is None:
path = "Global"
path = path.replace("._checkpoint_wrapped_module", "")
out = func(*args, **kwargs)
# Handle linear layers
if func._overloadpacket in [torch.ops.aten.addmm, torch.ops.aten.mm]:
weight: torch.Tensor
input: torch.Tensor
if not self.mod_tracker.is_bw:
# (technically, weight is transposed)
if func._overloadpacket == torch.ops.aten.addmm:
_bias, input, weight = args[:3]
else:
assert func._overloadpacket == torch.ops.aten.mm
input, weight = args[:2]
self.log_tensor(f"{path}::in", input)
self.log_tensor(f"{path}::w", weight)
self.log_tensor(f"{path}::out", out)
self.linear_data[path] = (
input.shape,
weight.shape,
out.shape,
input[:4, :4].clone(),
weight[:4, :4].T.clone(),
)
elif func._overloadpacket == torch.ops.aten.mm:
# XXX: Try to find the actual path for the linear layer
# This is messed with with Francisco's FSDP sometimes
new_path, bwtype = self._find_bw_path_and_type(path, out, args)
if new_path != path:
if self.verbose:
print(f"E: Fixing path `{path}` -> `{new_path}")
path = new_path
if bwtype == LinearBwType.DW:
# dW.t = dY.t @ X
self.log_tensor(f"{path}::w.g", out)
elif bwtype == LinearBwType.DX:
# dX = dY @ W.t
self.log_tensor(f"{path}::in.g", out)
self.log_tensor(f"{path}::out.g", args[0])
elif func._overloadpacket in [
torch.ops.aten._scaled_dot_product_flash_attention,
torch.ops.aten._scaled_dot_product_cudnn_attention,
]:
_, kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
_compute_attn_stats_sdpa(self, path, **kwargs)
elif func._overloadpacket == fmha.flash.FwOp.OPERATOR:
_, kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
_compute_attn_stats_flash(self, path, **kwargs)
elif func._overloadpacket == torch.ops.torchprobe.log:
uid = args[2]
path = self.uid_to_path.setdefault(uid, path)
self.log_tensor(f"{path}::{args[1]}", args[0])
if self.verbose:
print(f"{'[BW]' if self.mod_tracker.is_bw else '[FW]'} `{path}`: {func}")
return out
def _find_all_submodules_compiled(out: List[nn.Module], module: nn.Module) -> None:
if module._compiled_call_impl is not None:
out.append(module)
for c in module.children():
_find_all_submodules_compiled(out, module=c)
class TorchCompileDisabler:
def __init__(self, module: nn.Module) -> None:
self.module = module
self.submodules_compiled: List[nn.Module] = []
self.compiled_call_impl: List[Any] = []
self.disable_compile = torch.compiler.disable()
torch._dynamo.config.raise_on_ctx_manager_usage = False # type: ignore
def __enter__(self) -> None:
# Remove all `_compiled_call_impl` attributes to effectively
# "undo" compilation
self.submodules_compiled.clear()
_find_all_submodules_compiled(self.submodules_compiled, self.module)
self.compiled_call_impl = [
m._compiled_call_impl for m in self.submodules_compiled
]
for m in self.submodules_compiled:
m._compiled_call_impl = None
self.disable_compile.__enter__() # type: ignore
def __exit__(self, *args) -> None:
self.disable_compile.__exit__(*args) # type: ignore
for m, c_impl in zip(self.submodules_compiled, self.compiled_call_impl):
m._compiled_call_impl = c_impl
self.compiled_call_impl = []
Probe = AutoProbeD
# EXAMPLE USAGE
d = 512
seqlen = 4
bs = 2
class Attention1(nn.Module):
def forward(self, x):
attn_bias = fmha.attn_bias.LowerTriangularFromBottomRightMask()
return fmha.memory_efficient_attention(x, x, x, attn_bias=attn_bias).reshape(
[x.shape[0], seqlen, -1]
)
class Attention2(nn.Module):
def forward(self, x):
attn_bias = fmha.attn_bias.BlockDiagonalMask.from_seqlens(
[seqlen] * bs
).make_causal()
xr = x.reshape([1, 2 * seqlen, x.shape[2], x.shape[3]])
return fmha.memory_efficient_attention(xr, xr, xr, attn_bias=attn_bias).reshape(
[x.shape[0], seqlen, -1]
)
class AttentionSDPA(nn.Module):
def __init__(self):
super().__init__()
self.wo = nn.Linear(d, d)
def forward(self, x):
x = x.transpose(1, 2)
return self.wo(
F.scaled_dot_product_attention(x, x, x)
.transpose(1, 2)
.reshape([x.shape[0], seqlen, -1])
)
class AttentionSDPAFlash(AttentionSDPA):
def forward(self, x):
x = x.transpose(1, 2)
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
return self.wo(
F.scaled_dot_product_attention(x, x, x)
.transpose(1, 2)
.reshape([x.shape[0], seqlen, -1])
)
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.head = nn.Linear(d, 16)
self.trunk = nn.Sequential(
nn.Linear(d, d),
nn.Linear(d, d),
)
self.q_proj = nn.Linear(d, d, bias=False)
self.trunk.compile()
self.attn1 = Attention1()
self.attn2 = Attention2()
self.attnSDPA = AttentionSDPA()
self.attnSDPAflash = AttentionSDPAFlash()
def forward(self, x):
B, nHeads, D = x.shape[0], d // 64, 64
x = self.q_proj(x).reshape([B, seqlen, nHeads, D])
x = self.attn1(x) + self.attn2(x) + self.attnSDPA(x) + self.attnSDPAflash(x)
x = log_stats(x, "attns_out")
return self.head(self.trunk(x))
def test_masking() -> None:
q_seqlen = [1, 1, 14, 12]
kv_seqlen = [2, 2, 14, 18]
attn_bias = fmha.attn_bias.BlockDiagonalCausalMask.from_seqlens(
q_seqlen, kv_seqlen
).make_causal_from_bottomright()
logits = torch.randn(
[1, 1, sum(q_seqlen), sum(kv_seqlen)], dtype=torch.float32, device="cuda"
)
bias = attn_bias.materialize(logits.shape, dtype=logits.dtype, device=logits.device)
logits_masked = logits.clone()
_mask_attn_logits(
logits_masked,
list(range(logits.shape[2])),
causal=True,
cu_seqlens_q=attn_bias.q_seqinfo.seqstart,
cu_seqlens_k=attn_bias.k_seqinfo.seqstart,
)
assert (logits + bias == logits_masked).all().item()
def test_toy_model() -> None:
# Test masking
kw = dict(device="cuda", dtype=torch.float16)
x = torch.randn([bs, seqlen, d], **kw)
m = Model()
m.head = checkpoint_wrapper(
m.head, checkpoint_impl=CheckpointImpl.NO_REENTRANT, preserve_rng_state=False
)
m.to(**kw)
m.compile()
optim = torch.optim.SGD(m.parameters(), lr=0.0)
probe = AutoProbeD(m, "./probe.json")
for i in range(4):
with contextlib.ExitStack() as stack:
print(f"########### STEP {i}")
if i % 4 == 1:
stack.enter_context(probe)
probe.metadata = {"it": i}
y = m(x)
g = torch.randn_like(y)
y.backward(g)
if i % 4 == 1:
assert probe.enabled
# Make sure we registered all linears
print(list(probe.store.keys()))
for key in [
"Model::attns_out",
"Model::attns_out.g",
"Model.attn1::attn_logits",
"Model.attn2::attn_logits",
"Model.attnSDPA::attn_logits",
"Model.attnSDPAflash::attn_logits",
"Model.head::w",
"Model.head::w.g",
"Model.head::in",
"Model.head::in.g",
"Model.head::out",
"Model.head::out.g",
"Model.trunk.0::in",
"Model.trunk.1::in",
]:
assert key in probe.store, f"Missing key: '{key}'"
# .. and that the values are correct
for key, tensor in [
("Model.head::w", m.head.weight),
("Model.head::w.g", m.head.weight.grad),
("Model.q_proj::in", x),
("Model.q_proj::w.g", m.q_proj.weight.grad),
("Model.head::out", y),
("Model.head::out.g", g),
]:
assert key in probe.store, f"Missing key: '{key}'"
assert torch.allclose(
probe.store[key]["abs.mean"], tensor.float().abs().mean()
), f"'{key}' mismatches"
# Check we don't have `nans`
for key, value in probe.store.items():
if "abs.mean" in value:
assert math.isfinite(
value["abs.mean"].item()
), f"Inf/Nan for {key}"
optim.step()
optim.zero_grad()
|