File size: 5,877 Bytes
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
6ffeb66
bcc039b
 
 
 
 
b0956bd
f3e8125
 
 
 
 
b0956bd
f3e8125
 
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3e8125
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aebdc48
bcc039b
 
aebdc48
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aebdc48
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aebdc48
 
 
bcc039b
 
 
 
 
 
6ffeb66
bcc039b
 
6ffeb66
aebdc48
bcc039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ffeb66
 
 
 
 
 
 
bcc039b
 
 
 
 
 
 
6ffeb66
bcc039b
 
aebdc48
bcc039b
aebdc48
bcc039b
 
 
 
aebdc48
 
 
bcc039b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (c) Meta Platforms, Inc. and affiliates.
import logging
from typing import List, Optional, Tuple, Union

import torch
import torch.nn
import torch.nn as nn
from torch.nn import functional as F
from torch.nn.attention.flex_attention import BlockMask
from xformers.ops import AttentionBias

from bytelatent.base_transformer import (
    BaseTransformer,
    BaseTransformerArgs,
    flex_attention_comp,
    repeat_kv,
)
from bytelatent.model.utils import create_causal_mask

logger = logging.getLogger()
try:
    from apex.normalization.fused_layer_norm import FusedRMSNorm

    RMSNorm = FusedRMSNorm
except (ImportError, ModuleNotFoundError):
    logging.debug("Apex not found. Using nn.RMSNorm")
    RMSNorm = nn.RMSNorm


class CrossAttention(nn.Module):
    """
    CrossAttention block to attend to the encoder states from the decoder.
    Rope is not supported.
    """

    def __init__(
        self,
        dim: int,
        head_dim: int,
        n_heads: int,
        n_kv_heads: int,
        norm_eps: float,
    ):
        super().__init__()

        self.dim = dim
        self.head_dim = head_dim

        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
        self.heads_per_group = self.n_heads // self.n_kv_heads

        self.cross_attn_norm_q = nn.RMSNorm(dim, eps=norm_eps)
        self.cross_attn_norm_kv = RMSNorm(dim, eps=norm_eps)

        self.wq = nn.Linear(
            dim,
            n_heads * head_dim,
            bias=False,
        )
        self.wk = nn.Linear(
            dim,
            n_kv_heads * head_dim,
            bias=False,
        )
        self.wv = nn.Linear(
            dim,
            n_kv_heads * head_dim,
            bias=False,
        )

        self.wo = nn.Linear(
            n_heads * head_dim,
            dim,
            bias=False,
        )

    def forward(
        self,
        x: torch.Tensor,
        kv: torch.Tensor,
        mask: Optional[Union[BlockMask, AttentionBias, str]] = None,
    ) -> torch.Tensor:
        # B S D
        bsz, seq_len, _ = x.shape
        _, slen_kv, _ = kv.shape
        x_norm = self.cross_attn_norm_q(x)
        kv = self.cross_attn_norm_kv(kv)

        xq = self.wq(x_norm)
        xk = self.wk(kv)
        xv = self.wv(kv)

        output_shape = xq.shape
        # B S D -> B S H D
        xq = xq.view(bsz, seq_len, self.n_heads, self.head_dim)
        xk = xk.view(bsz, slen_kv, self.n_kv_heads, self.head_dim)
        xv = xv.view(bsz, slen_kv, self.n_kv_heads, self.head_dim)

        xk = repeat_kv(xk, self.heads_per_group, dim=2)
        xv = repeat_kv(xv, self.heads_per_group, dim=2)

        assert mask is None or isinstance(mask, BlockMask)
        xq, xk, xv = map(lambda e: e.transpose(1, 2), (xq, xk, xv))
        output = flex_attention_comp(xq, xk, xv, block_mask=mask)
        output = output.transpose(1, 2).contiguous()  # B H S D -> B S H D

        output = self.wo(output.reshape(output_shape))

        return x + output

    def init_weights(self, base_std: float, factor: float = 1.0):
        std = base_std or (self.dim ** (-0.5)) / factor

        nn.init.trunc_normal_(
            self.wq.weight,
            mean=0.0,
            std=std,
            a=-3 * std,
            b=3 * std,
        )

        nn.init.trunc_normal_(
            self.wk.weight,
            mean=0.0,
            std=std,
            a=-3 * std,
            b=3 * std,
        )

        nn.init.trunc_normal_(
            self.wv.weight,
            mean=0.0,
            std=std,
            a=-3 * std,
            b=3 * std,
        )

        nn.init.trunc_normal_(
            self.wo.weight,
            mean=0.0,
            std=std,
            a=-3 * std,
            b=3 * std,
        )
        self.cross_attn_norm_q.reset_parameters()
        self.cross_attn_norm_kv.reset_parameters()


class GlobalTransformer(BaseTransformer):
    def __init__(self, args: BaseTransformerArgs):
        super().__init__(args)
        self.dropout = args.dropout
        self.eos_id = args.eos_id
        self.dim_token_emb = args.dim_token_emb

        self.token_embedding_projection = None
        if args.dim_token_emb is not None and args.dim_token_emb != self.dim:
            self.token_embedding_projection = nn.Linear(
                args.dim_token_emb,
                args.dim,
                bias=False,
            )

    def forward(
        self,
        tokens: torch.Tensor,
        tok_idx: Optional[torch.Tensor] = None,
        embeds: Optional[torch.Tensor] = None,
        mask: Optional[Union[BlockMask, AttentionBias, torch.Tensor, str]] = None,
        cache: Optional[List[Tuple[torch.Tensor, torch.Tensor, int]]] = None,
    ):
        """
        Similar to BaseTransformer.forward, but with an additional embeds argument
        and projection to the token space.
        """
        bs, seqlen = tokens.shape

        h = embeds

        mask = (
            mask
            if mask is not None
            else create_causal_mask(
                seqlen,
                self.attn_impl,
                self.attn_bias_type,
                tokens=tokens,
                eos_id=self.eos_id,
            )
        )

        if self.token_embedding_projection is not None and h.shape[-1] != self.dim:
            h = self.token_embedding_projection(h)

        h = F.dropout(h, p=self.dropout, training=self.training)

        h = super().forward(h, tok_idx=tok_idx, mask=mask, attn_impl=self.attn_impl)
        return h, cache

    def init_weights(self):
        super().init_weights()
        std = self.dim_token_emb ** (-0.5)
        if self.token_embedding_projection is not None:
            nn.init.trunc_normal_(
                self.token_embedding_projection.weight,
                mean=0.0,
                std=std,
                a=-3 * std,
                b=3 * std,
            )