Spaces:
Running
Running
File size: 38,937 Bytes
bcc039b 1b67cbe bcc039b ff36aa8 bcc039b 6ffeb66 bcc039b 1b67cbe bcc039b 7622d28 bcc039b 739dc71 bcc039b 6ffeb66 739dc71 6ffeb66 bcc039b 6ffeb66 739dc71 6ffeb66 bcc039b 1b67cbe bcc039b 7622d28 bcc039b ff36aa8 bcc039b aebdc48 bcc039b aebdc48 bcc039b aebdc48 bcc039b aebdc48 bcc039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
from enum import Enum, auto
from typing import Any, Optional
import torch
from pydantic import model_validator
from torch import nn
from torch.nn.attention.flex_attention import create_block_mask
from typing_extensions import Self
from bytelatent.base_transformer import (
BaseTransformerArgs,
InitStdFactor,
SequenceModelWithOutput,
)
from bytelatent.data.patcher import Patcher, PatcherArgs
from bytelatent.model.latent_transformer import GlobalTransformer
from bytelatent.model.local_models import LocalDecoder, LocalEncoder, LocalModelArgs
from bytelatent.model.utils import downsample
from bytelatent.tokenizers.constants import BOE_ID, BOS_ID, EOS_ID, OFFSET, PAD_ID
from huggingface_hub import PyTorchModelHubMixin
def attention_flops_per_token(n_layers, seq_len, dim, causal):
# Formula from https://github.com/Dao-AILab/flash-attention/blob/main/benchmarks/benchmark_flash_attention.py#L27-L30
return 3.5 * (4 * n_layers * seq_len * dim // (2 if causal else 1))
def get_num_flop_per_token(
num_non_embed_params: int, n_layers: int, dim: int, seq_len: int
) -> int:
return 6 * num_non_embed_params + attention_flops_per_token(
n_layers, seq_len, dim, True
)
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
def setattrs(_self, **kwargs):
for k, v in kwargs.items():
setattr(_self, k, v)
def get_encoder_dim_token_emb(args):
if args.dim_token is not None:
dim_token_emb = args.dim_token
elif args.use_local_encoder_transformer:
dim_token_emb = args.dim_local_encoder
else:
dim_token_emb = args.dim_global // args.patch_size
return dim_token_emb
def get_encoder_dim_patch_emb(args):
dim_patch_emb = None
if args.cross_attn_encoder:
if args.cross_attn_init_by_pooling:
dim_patch_emb = args.dim_local_encoder
else:
dim_patch_emb = args.dim_global
return dim_patch_emb
def get_global_dim_patch_emb(args):
dim_token_emb = get_encoder_dim_token_emb(args)
if args.cross_attn_encoder:
dim_patch_emb = dim_token_emb * args.cross_attn_k
elif (
args.downsampling_by_pooling is None
or not args.downsampling_by_pooling
or len(args.downsampling_by_pooling) == 0
):
dim_patch_emb = dim_token_emb * args.patch_size
else:
dim_patch_emb = dim_token_emb * sum(
[
pooling in args.downsampling_by_pooling
for pooling in ["avg", "min", "max"]
]
)
return dim_patch_emb
def get_decoder_dim_token_emb(args):
if args.share_encoder_decoder_emb:
dim_token_emb = get_encoder_dim_token_emb(args)
elif args.dim_token is not None:
dim_token_emb = args.dim_token
else:
dim_token_emb = args.dim_local_decoder
return dim_token_emb
def parse_ngram_to_size(ngram_to_size_str: str | None) -> dict[int, int]:
if ngram_to_size_str is None:
return None
ngram_to_size = {}
for entry in ngram_to_size_str.split(","):
ngram, size = entry.split(":")
ngram = int(ngram)
size = int(size)
ngram_to_size[ngram] = size
return ngram_to_size
def fill_tokens(tokens, patch_size, fill_id):
batch_size, seq_len = tokens.shape
if seq_len % patch_size == 0:
return tokens
else:
remaining = patch_size - seq_len % patch_size
final_padding = tokens.new(batch_size, remaining).fill_(fill_id)
return torch.cat((tokens, final_padding), dim=1)
def decoder_patch_ids_from_lengths(patch_lengths, nb_boe, seq_len):
first_patch_length = patch_lengths[0, 0]
assert torch.all(
first_patch_length == patch_lengths[:, 0]
), "first patch should always be the same size (1 for dynamic, patch_size for static)."
assert (
first_patch_length - nb_boe == 1
), f"First patch (patch length: {first_patch_length}) should have one non-boe token (boe toks: {nb_boe})"
# Remove first patch from patch_ids for local decoder inputs and shift the last patch.
# decoder_patch_lengths = patch_lengths[:, 1:].clone()
# decoder_patch_lengths = add_to_last_nonzero_patch(decoder_patch_lengths, 1)
decoder_patch_lengths = patch_lengths[:, 1:]
assert (
decoder_patch_lengths.sum() + (nb_boe + 1) * patch_lengths.shape[0]
== patch_lengths.sum()
), f"{decoder_patch_lengths.sum() + (nb_boe + 1) * patch_lengths.shape[0]} != {patch_lengths.sum()}"
assert torch.all(decoder_patch_lengths >= 0), f"{decoder_patch_lengths}"
decoder_patch_ids = patch_ids_from_lengths(
patch_lengths=decoder_patch_lengths, seq_len=seq_len
)
return decoder_patch_ids
primes = [
1000000007,
5915587277,
1500450271,
3267000013,
5754853343,
4093082899,
9576890767,
3628273133,
2860486313,
5463458053,
3367900313,
]
def rolling_polynomial_hash(t, hash_func_nb: int = 0):
prime = torch.tensor(primes[hash_func_nb], dtype=torch.int64, device=t.device)
prime_powers = torch.stack([prime**i for i in range(t.shape[-1])])
return torch.sum(t * prime_powers, dim=-1)
def get_rolling_polynomial_hash_fn(hash_func_nb: int = 0, group_size: int = 2):
prime = torch.tensor(primes[hash_func_nb], dtype=torch.int64)
prime_powers = torch.stack([prime**i for i in range(group_size)])
def rolling_polynomial_hash_fn(t):
return torch.sum(t * prime_powers, dim=-1)
return rolling_polynomial_hash_fn
def byte_group_hash_function(
x: torch.Tensor, group_size: int = 2, hash_func_nb: int = 0, max_hash: int = 30000
):
"""
Returns a hash of the input x and maps it to a value in the range [0, max_hash].
expects: x of shape (batch_size, seq_len) with values as ids in the token vocab.
returns a tensor of shape (batch_size, seq_len) with values in the range [0, max_hash].
Note: max hash can make a big difference on the number of collisions.
"""
with torch.no_grad():
bs, seq_len = x.shape
# x_numpy = x.numpy()
# hash_values = torch.zeros(bs, seq_len, dtype=torch.int64, requires_grad=False)
# for i in range(bs):
# for j in range(seq_len):
# start = max(j, j-group_size+1)
# end = j+1
# hash_values[i, j] = hash_array(x_numpy[i, start:end], max_hash)
prefix = torch.zeros(bs, group_size - 1, dtype=torch.int64, device=x.device)
x = torch.cat([prefix, x], dim=1)
windows = x.unfold(1, group_size, 1)
# hashes = get_rolling_polynomial_hash_fn(hash_func_nb, group_size)(windows)
hashes = rolling_polynomial_hash(windows, hash_func_nb)
hash_values_range = hashes % max_hash
hash_values_range.requires_grad = False
return hash_values_range
def create_patch_mask_from_ids(
patch_ids, num_patches, window=None, patches_as_queries=False
):
"""
Creates a tensor of shape [bs, seq_len, num_patches] where each element at position (i, j, k)
is True if the patch id at position (i, j) is less than or equal to k.
Args:
patch_ids (torch.Tensor): Tensor of shape [bs, seq_len] containing patch ids.
num_patches (int): Total number of patches.
window (int): If not None, only considers patches within a window of size window.
patches_as_queries (bool): If True, the patches are used as queries
Returns:
torch.Tensor: Tensor of shape [bs, q_len, kv_len] with the desired mask.
"""
bs, seq_len = patch_ids.shape
if not patches_as_queries:
q_ids = patch_ids.unsqueeze(-1).expand(bs, seq_len, num_patches)
kv_ids = (
torch.arange(num_patches, device=patch_ids.device)
.unsqueeze(0)
.unsqueeze(0)
.expand(bs, seq_len, num_patches)
)
else:
kv_ids = patch_ids.unsqueeze(1).expand(bs, num_patches, seq_len)
q_ids = (
torch.arange(num_patches, device=patch_ids.device)
.unsqueeze(0)
.unsqueeze(-1)
.expand(bs, num_patches, seq_len)
)
if window is None:
mask = q_ids == kv_ids
else:
mask = (kv_ids <= q_ids) & (q_ids < kv_ids + window)
return mask
def cross_attn_mask(
patch_ids,
patch_lengths,
N,
patches_as_queries=False,
cross_attn_k=1,
window=None,
block_mask=True,
):
bs = patch_ids.shape[0]
with torch.no_grad():
# Create the patch mask
cross_mask = create_patch_mask_from_ids(
patch_ids,
patch_lengths.shape[1],
window=window,
patches_as_queries=patches_as_queries,
).repeat_interleave(cross_attn_k, dim=1 if patches_as_queries else -1)
q_len = patch_lengths.shape[1] * cross_attn_k if patches_as_queries else N
kv_len = N if patches_as_queries else patch_lengths.shape[1] * cross_attn_k
assert cross_mask.shape == (
bs,
q_len,
kv_len,
), f"{cross_mask.shape} != {(bs, q_len, kv_len)}"
if block_mask:
def patch_mask(b, h, q_idx, kv_idx):
return cross_mask[b, q_idx, kv_idx]
block_mask = create_block_mask(
patch_mask,
B=bs,
H=None,
Q_LEN=q_len,
KV_LEN=kv_len,
_compile=True,
)
return block_mask
else:
return torch.where(
cross_mask, torch.tensor(0.0), torch.tensor(float("-inf"))
).unsqueeze(
1
) # [bs, 1, q_len, kv_len]
def get_blt_input(
tokens: torch.Tensor,
enforce_patch_size_multiple: bool,
nb_boe: torch.Tensor,
patch_size: int,
boe_id: int,
):
"""
This function returns X_et, X_gt and X_dt, the encoder, global, and decoder
tokens respectively.
Consider the input and target sequences:
X=[3,4,5,6,7,eos,bos,8,9,10,eos,bos,11,12,13]
Y=[4,5,6,7,eos,bos,8,9,10,eos,bos,11,12,13,14]
with patch_size=4
Note 1: that there will be no special tokens introduced at the patch level.
Note 2: X_e needs to be trimmed to be passed to Global
Current without boe:
X_et = [[boe,boe,boe,boe] [3,4,5,6], [7,eos,bos,8], [9,10,eos,bos] [11,12,13, pad]]
X_g = [[boe,boe,boe,boe] [3,4,5,6], [7,eos,bos,8], [9,10,eos,bos] [11,12,13, pad]] # remove last glob patch
X_dt = [[3,4,5,6] [7,eos,bos,8], [9,10,eos,bos], [11,12,13]]
Y = [[4,5,6,7] [eos,bos,8,9], [10,eos,bos,11], [12,13,14]]
--> lag fix:
X_et = [[boe,boe,boe,3] [4,5,6,7], [eos,bos,8,9], [10,eos,bos,11] [12,13,pad,pad]]
X_g = [[boe,boe,boe,3] [4,5,6,7], [eos,bos,8,9], [10,eos,bos,11]]
X_dt = [[3,4,5,6] [7,eos,bos,8], [9,10,eos,bos], [11,12,13]]
Y = [[4,5,6,7] [eos,bos,8,9], [10,eos,bos,11], [12,13,14]]
Dynamic (current):
X = [3,4,5,6,7,eos,bos,8,9,10,eos,bos]
Y = [4,5,6,7,eos,bos,8,9,10,eos,bos,11]
entropy patching:
input: 7, bos, 9, 10
pred (high entropy): eos, 8, 10, eos
X_et = [[boe,3,4,5,6,7,eos,bos,8,9,10,eos,bos]
X_g = [[boe], [3,4,5,6], [7,eos],[bos,8],[9], [10,eos]]
X_dt = [[3,4,5,6], [7,eos], [bos,8],[9], [10,eos],[bos]]
Y = [4,5,6,7,eos,bos,8,9,10,eos,bos,11]
--> lag fix no boe (force single byte first patch):
X_et = [[3,4,5,6,7,eos,bos,8,9,10,eos,bos,11,12]
X_g = [[3], [4,5,6,7], [eos,bos],[8,9], [10], [eos,bos], [11,12]] # remove last global patch
X_dt = [[3,4,5,6], [7,eos], [bos,8], [9], [10,eos], [bos,11,12]]
Y = [4,5,6,7, eos,bos, 8,9, 10, eos,bos, 11,12,13]
input: 4, 7, bos, 9, 10
pred (high entropy): 5, eos, 8, 10, eos
X_et = [[3,4,5,6,7,eos,bos,8,9,10,eos,bos,11,12]
X_g = [[3], [4] , [5,6,7], [eos,bos],[8,9], [10], [eos,bos], [11,12]] # remove last global patch
X_dt = [[3] [4,5,6], [7,eos], [bos,8], [9], [10,eos], [bos,11,12]]
Y = [4,] [5,6,7, eos,bos, 8,9, 10, eos,bos, 11,12,13]
Handle the last byte properly.
patch_lengths = [1, 1, 3, 2, 2 1 2 2 1]
X_et = [[3,4,5,6,7,eos,bos,8,9,10,eos,bos,11,12]
X_g = [[3], [4] , [5,6,7], [eos,bos],[8,9], [10], [eos,bos], [11,12]] # do not remove last global patch
X_dt = [[3] [4,5,6], [7,eos], [bos,8], [9], [10,eos], [bos,11] [12]]
Y = [4,] [5,6,7, eos,bos, 8,9, 10, eos,bos, 11,12, 13]]
bpe delim
X_et = [[3,4,5,6,7,<d>,eos,bos,<d>,8,9,<d>,10,<d>,eos,bos,11,12]
X_g = [[3], [4,5,6,7,<d>], [eos,bos,<d>], ..
X_dt = [[3,4,5,6,7], [<d>,eos,bos], [<d>,bos,8], ..
Y = [4,5,6,7,<d>, eos,bos,<d> 8,9,<d>, ..
Note 1: that there will be no special tokens introduced at the patch level.
Note 2: X_e needs to be trimmed to be passed to Global
"""
batch_size, seq_len = tokens.shape
local_encoder_tokens = tokens
local_decoder_tokens = tokens
if nb_boe > 0:
padded_patch = tokens.new(batch_size, nb_boe).fill_(boe_id)
local_encoder_tokens = torch.cat((padded_patch, local_encoder_tokens), dim=1)
# global_tokens = tokens.new(batch_size, ((seq_len-1) // patch_size)+1).fill_(boe_id)
# create global tokens, contains boe tokens and eos
# padded_local_encoder_tokens = fill_tokens(local_encoder_tokens, patch_size, boe_id)
# patches = padded_local_encoder_tokens.view(batch_size, -1, patch_size)
# global_tokens = (patches.eq(eos_id).any(dim=2).int() * eos_id)[:, 1:]
# global_tokens += global_tokens.eq(0).int() * boe_id
# TODO: fix this when we want to use block causal in the global.
if enforce_patch_size_multiple and local_encoder_tokens.shape[-1] % patch_size != 0:
local_encoder_tokens = fill_tokens(local_encoder_tokens, patch_size, boe_id)
return local_encoder_tokens, None, local_decoder_tokens
def patch_ids_from_lengths(patch_lengths, seq_len):
bs, num_patches = patch_lengths.shape
# Create a tensor of cumulative sums of the patch lengths
cum_d = torch.cat(
[
torch.zeros(bs, 1, dtype=patch_lengths.dtype, device=patch_lengths.device),
patch_lengths.cumsum(dim=-1),
],
dim=-1,
)
patch_ids = (cum_d.unsqueeze(-1) <= torch.arange(seq_len, device=cum_d.device)).sum(
dim=-2
) - 1
assert not (
torch.max(patch_ids) > patch_lengths.shape[-1] or torch.min(patch_ids) < 0
), f"{torch.max(patch_ids)} > {patch_lengths.shape[-1]} or {torch.min(patch_ids)} < 0"
return patch_ids
class ByteLatentTransformerArgs(BaseTransformerArgs):
# Basic model configuration
seed: int = 42
vocab_size: int = -1
dim: int = 512
n_layers: int = 8
n_heads: int = 8
# TODO: What is the purpose of this parameter?
weight_tying: bool = False
patch_in_forward: bool = False
# Architecture and dimensions
dim_token: int | None = None
dim_global: int = 512
dim_local_decoder: int = 512
dim_local_encoder: int = 512
n_layers_global: int = 8
n_layers_local_decoder: int = 8
n_layers_local_encoder: int = 8
# Tokenization and patching
patch_size: float | None = None
patching_mode: str | None = None
patching_threshold: float | None = None
patching_threshold_add: float | None = None
monotonicity: bool = False
patching_batch_size: int = 1
patching_device: str = "cuda"
max_patch_length: int | None = None
# Encoder/Decoder configuration
tie_local_encoder_decoder_logits: bool = False
use_local_encoder_transformer: bool = False
encoder_lm_loss: bool = False
max_encoder_seq_length: int | None = None
pad_to_max_length: bool = False
encoder_enable_byte_ngrams: bool = False
encoder_enable_byte_group_hash: bool = False
ngram_vocab_sizes: int | None = None
# Cross attention configurations
cross_attn_encoder: bool = False
cross_attn_decoder: bool = False
cross_attn_window_encoder: int | None = None
cross_attn_window_decoder: int | None = None
cross_attn_k: int | None = None
cross_attn_nheads: int | None = None
cross_attn_all_layers_decoder: bool = False
cross_attn_all_layers_encoder: bool = False
cross_attn_use_flex_attention: bool = True
cross_attn_init_by_pooling: bool = False
# Encoder hash configurations
encoder_hash_byte_group_size: Any | None = None
encoder_hash_byte_group_vocab: int = 30000
encoder_hash_byte_group_nb_functions: int = 3
# Model behavior and optimization
log_patch_lengths: bool = False
non_linearity: str = "swiglu"
use_rope: bool = True
recompute_fc1_out: bool = False
recompute_fc3_out: bool = False
recompute_attn: bool = True
custom_bwd: bool = False
layer_ckpt: str = "all"
# Initialization and attention
init_use_gaussian: bool = True
init_use_depth: str = "current"
attn_bias_type: str = "causal"
alpha_depth: str = "disabled"
max_length: int = 2048
# Norm configuration
norm_eps: float = 1e-5
norm_affine: bool = True
pre_norm: bool = True
norm_type: str = "rmsnorm"
# Additional configurations
multiple_of: int = 256
ffn_dim_multiplier: float = 1.0
dropout: float = 0
output_size: int = -1
# Additional parameters from ModelArgs
architecture: str = "vanilla"
share_encoder_decoder_emb: bool = True
global_local_decoder_residual_layer: str | None = None
tokenize_with_bpe_delimiter: bool = False
patching_thresholds_str: str | None = None
tie_local_encoder_decoder: bool = False
encoder_preds_low_entropy_toks: float | None = None
encoder_preds_random_toks: float | None = None
dim_token_emb: int | None = None
dim_patch_emb: int | None = None
encoder_ngram_table_dir: str | None = None
encoder_ngram_to_size_str: str | None = None
# Model architecture params
entropy_model_checkpoint_dir: str | None = None
entropy_model_is_ngram_model: bool = False
downsampling_by_pooling: str | None = None
n_heads_global: int = 8
n_heads_local_decoder: int = 8
n_heads_local_encoder: int = 8
n_kv_heads: int | None = None
n_kv_heads_global: int | None = None
conv_kernel_size: int | None = None
local_attention_window_len: int | None = None
# Performance optimization
sequence_parallel: bool = False
loss_parallel: bool = False
fuse_sequence_parallel: bool = False
use_fsdp: bool = True
attn_to_keep: str = "all"
# Parameter mixing
pm_size: int = 0
# Logging
full_logging_n_layers: int = 4
@model_validator(mode="after")
def check_hash_byte_sizes(self) -> Self:
if (
self.encoder_hash_byte_group_size is not None
and type(self.encoder_hash_byte_group_size) == str
):
self.encoder_hash_byte_group_size = [
int(x)
for x in self.encoder_hash_byte_group_size.split(",")
if len(x) > 0
]
return self
class GlobalTransformerArgs(ByteLatentTransformerArgs):
# Global encoder specific dimensions
dim_token_emb: int | None = None
dim_patch_emb: int | None = None
def __post_init__(self):
# Override base args with global encoder specific values
self.dim = self.dim_global
self.n_layers = self.n_layers_global
self.n_heads = self.n_heads_global
self.n_kv_heads = self.n_kv_heads_global
self.local_attention_window_len = None
self.cross_attn_encoder = False
self.cross_attn_decoder = False
class LocalDecoderArgs(ByteLatentTransformerArgs):
# Local decoder specific dimensions
dim_token_emb: int | None = None
dim_patch_emb: int | None = None
def __post_init__(self):
# Override base args with local decoder specific values
self.dim = self.dim_local_decoder
self.n_layers = self.n_layers_local_decoder
self.n_heads = self.n_heads_local_decoder
self.cross_attn_encoder = False
self.cross_attn_init_by_pooling = False
self.attn_bias_type = "local_block_causal"
def create_global_transformer(args: ByteLatentTransformerArgs) -> GlobalTransformer:
global_args = args.model_copy(
deep=True,
update=dict(
dim=args.dim_global,
n_layers=args.n_layers_global,
n_heads=args.n_heads_global,
n_kv_heads=args.n_kv_heads_global,
local_attention_window_len=None,
dim_token_emb=get_global_dim_patch_emb(args),
dim_patch_emb=None,
cross_attn_encoder=False,
cross_attn_decoder=False,
),
)
return GlobalTransformer(global_args)
def create_local_encoder(args: ByteLatentTransformerArgs) -> LocalEncoder:
local_encoder_args = LocalModelArgs(
# Updated args
dim=args.dim_local_encoder,
n_layers=args.n_layers_local_encoder,
n_heads=args.n_heads_local_encoder,
dim_token_emb=get_encoder_dim_token_emb(args),
dim_patch_emb=get_encoder_dim_patch_emb(args),
cross_attn_encoder=args.cross_attn_encoder,
cross_attn_decoder=False,
cross_attn_k=args.cross_attn_k if args.cross_attn_encoder else None,
cross_attn_init_by_pooling=args.cross_attn_init_by_pooling,
# Defaults
head_dim=args.head_dim,
max_seqlen=args.max_encoder_seq_length,
dropout=args.dropout,
vocab_size=args.vocab_size + args.pm_size,
norm_eps=args.norm_eps,
patch_size=args.patch_size,
sliding_window=args.local_attention_window_len,
use_rope=args.use_rope,
rope_theta=args.rope_theta,
rope_use_fp32_in_outer_product=args.rope_use_fp32_in_outer_product,
init_base_std=args.init_base_std,
init_std_factor=args.init_std_factor,
n_kv_heads=args.n_kv_heads,
attn_impl=args.attn_impl,
attn_bias_type="local_block_causal",
multiple_of=args.multiple_of,
ffn_dim_multiplier=args.ffn_dim_multiplier,
patching_mode=args.patching_mode,
use_local_encoder_transformer=args.use_local_encoder_transformer,
downsampling_by_pooling=args.downsampling_by_pooling,
encoder_hash_byte_group_size=args.encoder_hash_byte_group_size,
cross_attn_all_layers_encoder=args.cross_attn_all_layers_encoder,
cross_attn_all_layers_decoder=args.cross_attn_all_layers_decoder,
cross_attn_nheads=args.cross_attn_nheads,
eos_id=args.eos_id,
)
return LocalEncoder(local_encoder_args)
def create_local_decoder(args: ByteLatentTransformerArgs) -> LocalDecoder:
# First deep copy the original args
local_decoder_args = LocalModelArgs(
dim=args.dim_local_decoder,
n_layers=args.n_layers_local_decoder,
n_heads=args.n_heads_local_decoder,
dim_token_emb=get_decoder_dim_token_emb(args),
dim_patch_emb=args.dim_global,
cross_attn_encoder=False,
cross_attn_decoder=args.cross_attn_decoder,
cross_attn_init_by_pooling=False, # states are already defined
cross_attn_k=args.cross_attn_k if args.cross_attn_decoder else None,
# Defaults
head_dim=args.head_dim,
max_seqlen=args.max_encoder_seq_length,
dropout=args.dropout,
vocab_size=args.vocab_size + args.pm_size,
norm_eps=args.norm_eps,
patch_size=args.patch_size,
sliding_window=args.local_attention_window_len,
use_rope=args.use_rope,
rope_theta=args.rope_theta,
rope_use_fp32_in_outer_product=args.rope_use_fp32_in_outer_product,
init_base_std=args.init_base_std,
init_std_factor=args.init_std_factor,
n_kv_heads=args.n_kv_heads,
attn_impl=args.attn_impl,
attn_bias_type="local_block_causal",
multiple_of=args.multiple_of,
ffn_dim_multiplier=args.ffn_dim_multiplier,
patching_mode=args.patching_mode,
use_local_encoder_transformer=args.use_local_encoder_transformer,
downsampling_by_pooling=args.downsampling_by_pooling,
encoder_hash_byte_group_size=args.encoder_hash_byte_group_size,
cross_attn_all_layers_encoder=args.cross_attn_all_layers_encoder,
cross_attn_all_layers_decoder=args.cross_attn_all_layers_decoder,
cross_attn_nheads=args.cross_attn_nheads,
eos_id=args.eos_id,
)
return LocalDecoder(local_decoder_args)
class EmbeddingType(Enum):
HASH_TOK = auto()
NGRAM = auto()
def init_embeddings(
args,
embedding_type: EmbeddingType,
local_encoder_dim: int,
encoder_hash_byte_group_size: list = None,
):
if (
embedding_type == EmbeddingType.HASH_TOK
and args.encoder_hash_byte_group_size is None
):
return None
if embedding_type == EmbeddingType.NGRAM and args.encoder_ngram_to_size_str is None:
return None
embeddings = []
if embedding_type == EmbeddingType.HASH_TOK:
emb_dim = local_encoder_dim
encoder_hash_byte_group_vocab = args.encoder_hash_byte_group_vocab
for _ in range(args.encoder_hash_byte_group_nb_functions):
for _ in encoder_hash_byte_group_size:
embeddings.append(
nn.Embedding(
encoder_hash_byte_group_vocab,
emb_dim,
)
)
elif embedding_type == EmbeddingType.NGRAM:
encoder_ngram_to_size = parse_ngram_to_size(args.encoder_ngram_to_size_str)
emb_dim = local_encoder_dim
OFFSET = 4 # This should be passed as parameter if it's variable
for ngram_vocab_size in encoder_ngram_to_size.values():
embeddings.append(nn.Embedding(ngram_vocab_size + OFFSET, emb_dim))
return nn.ModuleList(embeddings)
def compute_hash_embeddings(
local_encoder_tokens: torch.Tensor,
local_encoder,
encoder_hash_tok_embedding: nn.ModuleList,
encoder_hash_byte_group_nb_functions: int,
encoder_hash_byte_group_size: list,
encoder_hash_byte_group_vocab: int,
) -> torch.Tensor:
"""
Compute embeddings using hash token embeddings.
Args:
local_encoder_tokens: Input tokens tensor
local_encoder: Encoder object with tok_embeddings method
encoder_hash_tok_embedding: ModuleList of hash token embeddings
encoder_hash_byte_group_nb_functions: Number of hash functions
encoder_hash_byte_group_size: List of byte group sizes
encoder_hash_byte_group_vocab: Vocabulary size for hash embeddings
Returns:
torch.Tensor: Combined embeddings
"""
if encoder_hash_tok_embedding is None:
return None
local_encoder_embeds = local_encoder.tok_embeddings(local_encoder_tokens)
i = 0
for func_nb in range(encoder_hash_byte_group_nb_functions):
for byte_group_size in encoder_hash_byte_group_size:
hash_ids = byte_group_hash_function(
local_encoder_tokens,
byte_group_size,
hash_func_nb=func_nb,
max_hash=encoder_hash_byte_group_vocab,
)
hash_tok_embedding = encoder_hash_tok_embedding[i]
local_encoder_embeds = local_encoder_embeds + hash_tok_embedding(hash_ids)
i += 1
assert i == len(encoder_hash_tok_embedding)
return local_encoder_embeds
class ByteLatentTransformer(nn.Module, SequenceModelWithOutput, PyTorchModelHubMixin,
repo_url="https://github.com/facebookresearch/blt",
pipeline_tag="text-generation",
license="other"):
"""
The ByteLatentTransformer (BLT) is a byte-level language model architecture that processes byte sequences
by dynamically segmenting them into patches. It uses a combination of local encoders, global transformers,
and local decoders to efficiently encode and decode byte sequences, leveraging patch-based processing for
improved performance and inference efficiency.
"""
def __init__(self, args: ByteLatentTransformerArgs):
super().__init__()
# General configuration
self.weight_tying = args.weight_tying
self.patch_size = args.patch_size
self.patching_mode = args.patching_mode
self.boe_id, self.bos_id, self.pad_id, self.eos_id = (
BOE_ID,
BOS_ID,
PAD_ID,
EOS_ID,
)
self.downsampling_by_pooling = args.downsampling_by_pooling
self.patching_threshold = args.patching_threshold
self.dim = args.dim
self.init_base_std = args.init_base_std
self.init_std_factor = InitStdFactor(args.init_std_factor)
self.max_seqlen = args.max_seqlen
# Cross attention configuration
self.cross_attn_encoder = args.cross_attn_encoder
self.cross_attn_decoder = args.cross_attn_decoder
self.cross_attn_k = args.cross_attn_k
self.cross_attn_window_encoder = args.cross_attn_window_encoder
self.cross_attn_window_decoder = args.cross_attn_window_decoder
self.cross_attn_use_flex_attention = args.cross_attn_use_flex_attention
# Encoder hash configuration
self.encoder_hash_byte_group_size = args.encoder_hash_byte_group_size
self.encoder_hash_byte_group_vocab = args.encoder_hash_byte_group_vocab
self.encoder_hash_byte_group_nb_functions = (
args.encoder_hash_byte_group_nb_functions
)
# ByteLatent modules
self.local_encoder = create_local_encoder(args)
self.global_transformer = create_global_transformer(args)
self.local_decoder = create_local_decoder(args)
self.encoder_hash_tok_embedding = init_embeddings(
args,
EmbeddingType.HASH_TOK,
local_encoder_dim=self.local_encoder.dim,
encoder_hash_byte_group_size=self.encoder_hash_byte_group_size,
)
self.encoder_ngram_embedding = init_embeddings(
args,
EmbeddingType.NGRAM,
local_encoder_dim=self.local_encoder.dim,
encoder_hash_byte_group_size=None,
)
# Encoder ngram embedding tables
self.encoder_ngram_embedding = None
if args.encoder_enable_byte_ngrams:
self.encoder_ngram_embedding = nn.ModuleList()
assert args.ngram_vocab_sizes is not None
self.encoder_ngram_to_size = parse_ngram_to_size(
args.encoder_ngram_to_size_str
)
ngram_emb_dim = self.local_encoder.dim
for ngram_vocab_size in self.encoder_ngram_to_size.values():
self.encoder_ngram_embedding.append(
nn.Embedding(ngram_vocab_size + OFFSET, ngram_emb_dim)
)
# Output layer
assert args.vocab_size > 0, "vocab_size must be greater than 0"
# Patcher module
if args.patch_in_forward:
self.patcher = Patcher(
PatcherArgs(
patch_size=args.patch_size,
patching_mode=args.patching_mode,
patching_threshold=args.patching_threshold,
patching_threshold_add=args.patching_threshold_add,
monotonicity=args.monotonicity,
max_patch_length=args.max_patch_length,
)
)
def get_output_seq_len(self):
return self.max_seqlen
def forward(
self,
tokens: torch.Tensor,
patch_lengths: Optional[torch.Tensor] = None,
ngram_ids: Optional[torch.Tensor] = None,
):
# Ensure ngram_ids is either a tensor or None
assert (
isinstance(ngram_ids, torch.Tensor) or ngram_ids is None
), f"ngram_ids must be a tensor or None, but was: {type(ngram_ids)}"
bs, N = tokens.shape # Batch size and sequence length
# Get megabyte inputs
nb_boe = int(0 if self.patching_mode != "" else self.patch_size - 1)
local_encoder_tokens, _, local_decoder_tokens = get_blt_input(
tokens=tokens,
enforce_patch_size_multiple=False,
nb_boe=nb_boe,
patch_size=self.patch_size,
boe_id=self.boe_id,
)
# Patching
if patch_lengths is None:
assert (
getattr(self, "patcher", None) is not None
), "Patcher not defined and no patch_lengths passed."
patch_lengths, tok_scores = self.patcher.patch(
local_encoder_tokens,
include_next_token=True,
threshold=self.patcher.threshold,
)
else:
if nb_boe > 0:
patch_lengths[:, 0] += nb_boe
assert torch.min(patch_lengths) >= 0
# Generate patch IDs from patch_lengths
patch_ids = patch_ids_from_lengths(
patch_lengths, local_encoder_tokens.shape[-1]
)
assert torch.max(patch_ids) + 1 <= torch.max(
(patch_lengths != 0).sum(dim=-1)
), f"{torch.max(patch_ids) + 1} > {torch.max((patch_lengths != 0).sum(dim=-1))}"
cross_attn_mask_enc = None
# Cross-attention encoder
if self.cross_attn_encoder:
cross_attn_mask_enc = cross_attn_mask(
patch_ids,
patch_lengths,
N,
patches_as_queries=True,
cross_attn_k=self.cross_attn_k,
window=self.cross_attn_window_encoder,
block_mask=self.cross_attn_use_flex_attention,
)
# Hashing and embedding
local_encoder_embeds = compute_hash_embeddings(
local_encoder_tokens=local_encoder_tokens,
local_encoder=self.local_encoder,
encoder_hash_tok_embedding=self.encoder_hash_tok_embedding,
encoder_hash_byte_group_nb_functions=self.encoder_hash_byte_group_nb_functions,
encoder_hash_byte_group_size=self.encoder_hash_byte_group_size,
encoder_hash_byte_group_vocab=self.encoder_hash_byte_group_vocab,
)
# N-gram table embeddings
if self.encoder_ngram_embedding is not None:
assert ngram_ids is not None, "ngram_ids must be provided"
if local_encoder_embeds is None:
local_encoder_embeds = self.local_encoder.tok_embeddings(
local_encoder_tokens
)
assert len(ngram_ids) == len(
self.encoder_ngram_embedding
), f"ngram_ids.shape[0]={ngram_ids.shape[0]} versus len(encoder_ngram_embedding)={len(self.encoder_ngram_embedding)}, ngram_ids.shape={ngram_ids.shape}"
for i in range(ngram_ids.shape[0]):
ngram_embedding = self.encoder_ngram_embedding[i]
ngram_embeds = ngram_embedding(ngram_ids[i])
assert (
local_encoder_embeds.shape == ngram_embeds.shape
), f"Shape mismatch: {local_encoder_embeds.shape} vs {ngram_embeds.shape}, ngram_ids.shape={ngram_ids.shape}"
local_encoder_embeds = local_encoder_embeds + ngram_embeds
# Local encoder
(h_encoder, h_cross), cache_encoder = self.local_encoder(
tokens=local_encoder_tokens,
embeds=local_encoder_embeds,
patch_embeds=None,
cross_mask=cross_attn_mask_enc,
num_patches=patch_lengths.shape[1],
patch_ids=patch_ids,
)
# Downsampling
if not self.cross_attn_encoder:
assert (
patch_ids.shape[1] == h_encoder.shape[1]
), f"{patch_ids.shape[1]} != {h_encoder.shape[1]}"
h = downsample(
h_encoder,
patch_lengths.shape[1],
patch_lengths,
patch_ids,
downsampling_by_pooling=self.downsampling_by_pooling,
patch_size=self.patch_size,
)
else:
# Reshape h_cross
h = h_cross.view(bs, patch_lengths.shape[1], -1)
# Global transformer
global_tokens = tokens.new(h.shape[0], h.shape[1]).fill_(self.boe_id)
rows, cols = torch.where(local_encoder_tokens == self.eos_id)
eos_patch_ids = patch_ids[rows, cols]
global_tokens[rows, eos_patch_ids] = self.eos_id
h, _ = self.global_transformer(
embeds=h,
tokens=global_tokens,
)
# Unpatching
dec_embeds = h_encoder[:, nb_boe : nb_boe + N, :]
# Generate decoder patch IDs
decoder_patch_ids = decoder_patch_ids_from_lengths(
patch_lengths, nb_boe, local_decoder_tokens.shape[-1]
)
assert (
torch.max(decoder_patch_ids) + 1 <= h.shape[1]
), f"{torch.max(decoder_patch_ids) + 1} > {h.shape[1]}"
assert (
decoder_patch_ids.shape[1] == dec_embeds.shape[1]
), f"{decoder_patch_ids.shape[1]} != {dec_embeds.shape[1]}"
# Cross-attention decoder
if not self.cross_attn_decoder:
h = torch.gather(
h, 1, decoder_patch_ids.unsqueeze(-1).expand(-1, -1, h.shape[-1])
)
cross_attn_mask_dec = None
assert local_decoder_tokens.shape == h.shape[:-1]
else:
cross_attn_mask_dec = cross_attn_mask(
decoder_patch_ids,
patch_lengths,
N,
patches_as_queries=False,
cross_attn_k=self.cross_attn_k,
window=self.cross_attn_window_decoder,
block_mask=self.cross_attn_use_flex_attention,
)
# Local decoder
output, _ = self.local_decoder(
embeds=dec_embeds,
patch_embeds=h,
tokens=local_decoder_tokens,
cross_mask=cross_attn_mask_dec,
)
return output
def init_weights(self):
self.local_encoder.init_weights()
self.global_transformer.init_weights()
self.local_decoder.init_weights()
emb_std = self.local_encoder.dim ** (-0.5)
for emb in self.encoder_hash_tok_embedding:
nn.init.trunc_normal_(
emb.weight,
mean=0.0,
std=emb_std,
a=-3 * emb_std,
b=3 * emb_std,
)
|