Spaces:
Running
Running
File size: 19,935 Bytes
bcc039b ff36aa8 b0956bd caec8d2 bcc039b 6ffeb66 bcc039b 6ffeb66 bcc039b b0956bd f3e8125 b0956bd f3e8125 caec8d2 bcc039b 6ffeb66 bcc039b 6ffeb66 bcc039b 6ffeb66 bcc039b 739dc71 bcc039b 6ffeb66 bcc039b 6ffeb66 bcc039b 739dc71 bcc039b 739dc71 bcc039b 739dc71 bcc039b 739dc71 bcc039b 739dc71 bcc039b 739dc71 bcc039b 6ffeb66 bcc039b 6ffeb66 bcc039b 6ffeb66 bcc039b 6ffeb66 bcc039b aebdc48 bcc039b aebdc48 bcc039b aebdc48 bcc039b aebdc48 bcc039b 6ffeb66 bcc039b 6ffeb66 bcc039b ff36aa8 bcc039b 6ffeb66 bcc039b 739dc71 bcc039b 6ffeb66 bcc039b ff36aa8 bcc039b 0da051f bcc039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import abc
import logging
import os
from enum import Enum
from typing import Optional, Tuple, Union
import torch
from pydantic import BaseModel, ConfigDict
from torch import nn
from torch.nn import functional as F
from torch.nn.attention.flex_attention import (
BlockMask,
_mask_mod_signature,
flex_attention,
)
from xformers.ops import AttentionBias, fmha
from bytelatent.tokenizers.constants import EOS_ID
logger = logging.getLogger()
try:
from apex.normalization.fused_layer_norm import FusedRMSNorm
RMSNorm = FusedRMSNorm
except (ImportError, ModuleNotFoundError):
logging.debug("Apex not found. Using nn.RMSNorm")
RMSNorm = nn.RMSNorm
if int(os.environ.get("BLT_ALLOW_MISSING_FLEX_ATTENTION", False)) == 0:
flex_attention_comp = torch.compile(flex_attention)
else:
flex_attention_comp = None
class InitStdFactor(Enum):
DISABLED = "disabled" # Init std is divided by 1.0
GLOBAL_DEPTH = "global_depth" # Init std is divided by sqrt(2*n_layers)
CURRENT_DEPTH = "current_depth" # Init std is divided by sqrt(2*depth)
DIM_RATIO = "dim_ratio" # Init std is divided by model_dim/4096
class BaseTransformerArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
dim: int = 512
n_layers: int = 8
head_dim: int | None = None
n_heads: int | None = None
n_kv_heads: int | None = None
ffn_dim_multiplier: float | None = None
multiple_of: int = 256
norm_eps: float = 1e-5
rope_theta: float = 10000.0
rope_use_fp32_in_outer_product: bool = False
init_base_std: float | None = None
init_std_factor: InitStdFactor = InitStdFactor.DISABLED
max_seqlen: int = 1024
attn_impl: str | None = "sdpa"
attn_bias_type: str | None = None
# Special token config
eos_id: int | None = EOS_ID
def cross_entropy(pred, target, **kwargs):
return F.nll_loss(
F.log_softmax(pred.flatten(end_dim=-2).float(), -1),
target.flatten(end_dim=-1),
**kwargs,
)
def repeat_kv(x: torch.Tensor, n_rep: int, dim: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
assert dim == 2, "Only dim=2 is supported. Check the implementation for other dims."
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
def precompute_freqs_cis(
dim: int,
end: int,
theta: float = 10000.0,
rope_use_fp32_in_outer_product: bool = False,
):
"""
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
and the end index 'end'. The 'theta' parameter scales the frequencies.
The returned tensor contains complex values in complex64 data type.
Args:
dim (int): Dimension of the frequency tensor.
end (int): End index for precomputing frequencies.
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
Returns:
torch.Tensor: Precomputed frequency tensor with complex exponentials.
"""
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device)
if rope_use_fp32_in_outer_product:
t = t.to(torch.float32)
freqs = torch.outer(t, freqs).float()
cos, sin = freqs.cos(), freqs.sin()
return torch.stack((cos, -sin, sin, cos), dim=-1).view(*freqs.size(), 2, 2)
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor, seq_dim: int):
"""
Reshape frequency tensor for broadcasting it with another tensor.
This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
for the purpose of broadcasting the frequency tensor during element-wise operations.
Args:
freqs_cis (torch.Tensor): Frequency tensor to be reshaped.
x (torch.Tensor): Target tensor for broadcasting compatibility.
seq_dim (int): Sequence dimension index.
Returns:
torch.Tensor: Reshaped frequency tensor.
"""
ndim = x.ndim
assert 0 <= seq_dim < ndim
assert freqs_cis.shape == (
x.shape[seq_dim],
x.shape[-3],
2,
2,
), f"freqs_cis vs x: {(freqs_cis.shape, x.shape)}"
shape = [
d if i == seq_dim or i == ndim - 3 else 1 for i, d in enumerate(x.shape[:-2])
] + [2, 2]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
seq_dim: int,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
xq_ = xq.reshape(*xq.shape[:-1], -1, 1, 2) # B S H D -> B S H D/2 1 2
xk_ = xk.reshape(*xk.shape[:-1], -1, 1, 2) # B S H D -> B S H D/2 1 2
freqs_cis = reshape_for_broadcast(
freqs_cis, xq_, seq_dim
).float() # S D/2 2 2 -> 1 S 1 D/2 2 2
xq_out = (xq_ * freqs_cis).sum(5).flatten(3)
xk_out = (xk_ * freqs_cis).sum(5).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
def lengths_to_start_ids(lengths):
doc_start = lengths.cumsum(0)
doc_start = doc_start.roll(1)
doc_start[0] = 0
return doc_start
def lengths_to_local_ids(lengths):
assert lengths.ndim == 1
nb_seqs = lengths.size(0)
total_seqlen = lengths.sum()
# This gives the document id of each token
doc_id = torch.repeat_interleave(lengths)
# Compute document start for each document
doc_start = lengths_to_start_ids(lengths)
# Compute document start for each token
doc_start = doc_start[doc_id]
# Compute the position of each token within each document
tok_id = torch.arange(total_seqlen, device=lengths.device) - doc_start
return doc_id, tok_id
def generate_doc_mask_mod(
mask_mod: _mask_mod_signature,
lengths: torch.Tensor,
kv_lengths: Optional[torch.Tensor] = None,
) -> _mask_mod_signature:
"""Generates mask mods that apply to inputs to flex attention in the sequence stacked
format.
Args:
mask_mod: The mask mod to apply to the documents
lengths: Lengths of each document
Note:
What is the sequence stacked format? When assembling batches of inputs, we
take multiple sequences and stack them together to form 1 large sequence. We then
use masking to ensure that the attention scores are only applied to tokens within
the same document.
Example:
- Square mask
doc_mask lengths
a a b b b c c 2 3 2
a 1 0 0 0 0 0 0
a 1 1 0 0 0 0 0
b 0 0 1 0 0 0 0
b 0 0 1 1 0 0 0
b 0 0 1 1 1 0 0
c 0 0 0 0 0 1 0
c 0 0 0 0 0 1 1
"""
kv_lengths = kv_lengths if kv_lengths is not None else lengths
q_document_id, q_token_id = lengths_to_local_ids(lengths)
kv_document_id, kv_token_id = lengths_to_local_ids(kv_lengths)
q_max_idx = lengths.sum() - 1
kv_max_idx = kv_lengths.sum() - 1
def doc_mask_mod(b, h, q_idx, kv_idx):
q_idx_cap = torch.minimum(q_max_idx, q_idx)
kv_idx_cap = torch.minimum(kv_max_idx, kv_idx)
valid_idx = (q_idx <= q_max_idx) & (kv_idx <= kv_max_idx)
same_doc = q_document_id[q_idx_cap] == kv_document_id[kv_idx_cap]
q_logical = q_token_id[q_idx_cap]
kv_logical = kv_token_id[kv_idx_cap]
inner_mask = mask_mod(b, h, q_logical, kv_logical)
return same_doc & inner_mask & valid_idx
return doc_mask_mod
# Rotary embedding as in xformer, see if torchtrain implementation is not better. Also might be usefull to make it work with batch*seqlen collapsed.
class RotaryEmbedding(torch.nn.Module):
"""
RotaryEmbedding Module
"""
def __init__(
self,
theta: float,
head_dim: int,
max_seqlen: int = 1024,
rope_use_fp32_in_outer_product: bool = False,
):
super().__init__()
self.theta = theta
self.head_dim = head_dim
self.max_seqlen = max_seqlen
self.rope_use_fp32_in_outer_product = rope_use_fp32_in_outer_product
self.register_buffer(
"freqs_cis",
precompute_freqs_cis(
dim=head_dim,
end=max_seqlen,
theta=theta,
rope_use_fp32_in_outer_product=self.rope_use_fp32_in_outer_product,
),
persistent=False,
)
def reset_parameters(self):
self.freqs_cis[...] = precompute_freqs_cis(
dim=self.head_dim,
end=self.max_seqlen,
theta=self.theta,
rope_use_fp32_in_outer_product=self.rope_use_fp32_in_outer_product,
)
def forward(
self, seqlen: Optional[int] = None, tok_idx: Optional[torch.Tensor] = None
):
"""
Return freqs_cis corresponding to consecutive seqlen positions or the corresponding tok_idx positions
Args:
seqlen (int): Contiguous sequence length
tok_idx (torch.Tensor[int]): Position indices of each token this overrides seqlen
Returns:
Tuple(torch.Tensor, torch.Tensor): Embedded input tensor and freqs_cis
"""
test = (seqlen is not None) or (tok_idx is not None)
assert test, "Should provide atleast seqlen or tok_idx"
if tok_idx is not None:
return self.freqs_cis[tok_idx]
elif seqlen is not None:
return self.freqs_cis[0:seqlen]
def _reshape_for_attn_bias(
attn_bias: AttentionBias | None,
*tensors: torch.Tensor,
) -> list[torch.Tensor]:
to_transform = list(tensors)
if isinstance(attn_bias, fmha.attn_bias.BlockDiagonalCausalMask):
# could be `view` instead of reshape during training, but for inference
# have to reshape due to strides mismatch
to_transform = [t.reshape(1, -1, *t.shape[2:]) for t in to_transform]
return to_transform
class Attention(nn.Module):
def __init__(
self,
dim: int,
head_dim: int,
n_heads: int,
n_kv_heads: int,
rope_theta: float,
):
super().__init__()
self.dim = dim
self.head_dim = head_dim
self.rope_theta = rope_theta
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads
self.heads_per_group = self.n_heads // self.n_kv_heads
self.wq = nn.Linear(
dim,
n_heads * head_dim,
bias=False,
)
self.wk = nn.Linear(
dim,
n_kv_heads * head_dim,
bias=False,
)
self.wv = nn.Linear(
dim,
n_kv_heads * head_dim,
bias=False,
)
self.wo = nn.Linear(
n_heads * head_dim,
dim,
bias=False,
)
def forward(
self,
x: torch.Tensor,
freq_cis: torch.Tensor,
tok_idx: Optional[torch.Tensor] = None,
mask: Optional[Union[BlockMask, AttentionBias, str]] = None,
attn_impl: str = "sdpa",
) -> torch.Tensor:
# B S D
bsz, seq_len, dim = x.shape
xq = self.wq(x.view_as(x))
xk = self.wk(x.view_as(x))
xv = self.wv(x.view_as(x))
output_shape = xq.shape
# B S D -> B S H D
xq = xq.view(bsz, seq_len, self.n_heads, self.head_dim)
xk = xk.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
xv = xv.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, 1, freq_cis[0:seq_len])
# This condition helps us be easily compatible
# with inference by adding a pluggable KVCache
if hasattr(self, "kv_cache"):
xk, xv = self.kv_cache.update(xk, xv, tok_idx)
xk = repeat_kv(xk, self.heads_per_group, dim=2)
xv = repeat_kv(xv, self.heads_per_group, dim=2)
if attn_impl == "flex_attention":
assert mask is None or isinstance(mask, BlockMask)
xq, xk, xv = map(lambda e: e.transpose(1, 2), (xq, xk, xv))
output = flex_attention_comp(xq, xk, xv, block_mask=mask)
output = output.transpose(1, 2).contiguous() # B H S D -> B S H D
elif attn_impl == "xformers":
assert mask is None or isinstance(mask, AttentionBias)
query_shape = xq.shape
xq, xk, xv = _reshape_for_attn_bias(mask, xq, xk, xv)
output = fmha.memory_efficient_attention(xq, xk, xv, attn_bias=mask)
output = output.view(query_shape)
# This uses B S H D instead of B H S D of pytorch
elif attn_impl == "sdpa":
xq, xk, xv = map(lambda e: e.transpose(1, 2), (xq, xk, xv))
assert mask is None or isinstance(mask, (str, torch.Tensor))
is_causal = (mask == "causal") if isinstance(mask, str) else False
mask = mask if isinstance(mask, torch.Tensor) else None
output = F.scaled_dot_product_attention(
xq,
xk,
xv,
is_causal=is_causal,
attn_mask=mask,
)
output = output.transpose(1, 2).contiguous() # B H S D -> B S H D
else:
raise NotImplementedError(
f"Attention implementation {attn_impl} not supported"
)
output = self.wo(output.reshape(output_shape))
return output
def reset_parameters(self, init_std=None, factor=1.0):
init_std = init_std or (self.dim ** (-0.5)) / factor
for w in [self.wq, self.wk, self.wv]:
nn.init.trunc_normal_(
w.weight,
mean=0.0,
std=init_std,
a=-3 * init_std,
b=3 * init_std,
)
nn.init.trunc_normal_(
self.wo.weight,
mean=0.0,
std=init_std,
a=-3 * init_std,
b=3 * init_std,
)
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float],
mp_size: int = 1,
):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
assert hidden_dim % mp_size == 0
self.dim = dim
self.hidden_dim = hidden_dim
self.w1 = nn.Linear(
dim,
hidden_dim,
bias=False,
)
self.w3 = nn.Linear(
dim,
hidden_dim,
bias=False,
)
self.w2 = nn.Linear(
hidden_dim,
dim,
bias=False,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# B S D
x1 = self.w1(x.view_as(x))
x3 = self.w3(x.view_as(x))
output = self.w2(F.silu(x1) * x3)
return output
def reset_parameters(self, init_std=None, factor=1.0):
in_init_std = init_std or (self.dim ** (-0.5)) / factor
out_init_std = init_std or (self.hidden_dim ** (-0.5)) / factor
nn.init.trunc_normal_(
self.w1.weight,
mean=0.0,
std=in_init_std,
a=-3 * in_init_std,
b=3 * in_init_std,
)
nn.init.trunc_normal_(
self.w2.weight,
mean=0.0,
std=out_init_std,
a=-3 * out_init_std,
b=3 * out_init_std,
)
nn.init.trunc_normal_(
self.w3.weight,
mean=0.0,
std=in_init_std,
a=-3 * in_init_std,
b=3 * in_init_std,
)
class TransformerBlock(nn.Module):
def __init__(self, args: BaseTransformerArgs):
super().__init__()
assert (args.head_dim is not None) or (
args.n_heads is not None
), "Should specify at least head_dim or n_heads"
self.head_dim = args.head_dim or args.dim // args.n_heads
self.n_heads = args.n_heads or args.dim // args.head_dim
self.n_kv_heads = args.n_kv_heads or self.n_heads
assert args.n_heads % self.n_kv_heads == 0
assert args.dim % args.n_heads == 0
self.attention = Attention(
dim=args.dim,
head_dim=self.head_dim,
n_heads=self.n_heads,
n_kv_heads=self.n_kv_heads,
rope_theta=args.rope_theta,
)
self.feed_forward = FeedForward(
dim=args.dim,
hidden_dim=4 * args.dim,
multiple_of=args.multiple_of,
ffn_dim_multiplier=args.ffn_dim_multiplier,
)
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def forward(
self,
x: torch.Tensor,
freq_cis: torch.Tensor,
tok_idx: Optional[torch.Tensor] = None,
mask: Optional[Union[BlockMask, AttentionBias, str]] = None,
attn_impl: str = "sdpa",
) -> torch.Tensor:
attn_out = self.attention(
self.attention_norm(x),
freq_cis,
tok_idx=tok_idx,
mask=mask,
attn_impl=attn_impl,
)
h = x + attn_out
h_norm = self.ffn_norm(h)
out = h + self.feed_forward(h_norm)
return out
def init_weights(self, init_std=None, factor=1.0):
self.attention.reset_parameters(init_std, factor)
self.attention_norm.reset_parameters()
self.feed_forward.reset_parameters(init_std, factor)
self.ffn_norm.reset_parameters()
class SequenceModelWithOutput(abc.ABC):
@abc.abstractmethod
def get_output_seq_len(self) -> int:
pass
class BaseTransformer(nn.Module, SequenceModelWithOutput):
def __init__(self, args: BaseTransformerArgs):
super().__init__()
self.dim = args.dim
self.init_base_std = args.init_base_std
self.attn_impl = args.attn_impl
self.attn_bias_type = args.attn_bias_type
self.init_std_factor = InitStdFactor(args.init_std_factor)
self.max_seqlen = args.max_seqlen
self.rope_embeddings = RotaryEmbedding(
theta=args.rope_theta,
head_dim=args.head_dim or args.dim // args.n_heads,
max_seqlen=args.max_seqlen,
rope_use_fp32_in_outer_product=args.rope_use_fp32_in_outer_product,
)
self.eos_id = args.eos_id
self.layers = nn.ModuleList()
for _ in range(args.n_layers):
self.layers.append(TransformerBlock(args))
def get_output_seq_len(self):
return self.max_seqlen
def forward(
self,
h,
tok_idx: Optional[torch.Tensor] = None,
mask: Optional[Union[BlockMask, AttentionBias, str]] = None,
attn_impl: str = "sdpa",
):
freq_cis = self.rope_embeddings(seqlen=self.max_seqlen, tok_idx=tok_idx)
for i, layer in enumerate(self.layers):
h = layer(h, freq_cis, tok_idx=tok_idx, mask=mask, attn_impl=attn_impl)
return h
def init_weights(self):
self.rope_embeddings.reset_parameters()
for depth, layer in enumerate(self.layers):
factor = {
InitStdFactor.CURRENT_DEPTH: (2 * (depth + 1)) ** 0.5,
InitStdFactor.GLOBAL_DEPTH: (2 * (len(self.layers) + 1)) ** 0.5,
InitStdFactor.DIM_RATIO: self.dim / 4096,
InitStdFactor.DISABLED: 1.0,
}[self.init_std_factor]
layer.init_weights(self.init_base_std, factor)
|