|
import os |
|
os.system("pip install gradio transformers torch") |
|
|
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
import gradio as gr |
|
|
|
model = T5ForConditionalGeneration.from_pretrained("./Ruttoni_AI") |
|
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") |
|
|
|
print("Model loaded!") |
|
|
|
def generate_summary(input_text): |
|
input_ids = tokenizer.encode(input_text, return_tensors='pt') |
|
outputs = model.generate(input_ids) |
|
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return summary |
|
|
|
ai = gr.Interface(fn=generate_summary, inputs="text", outputs="text") |
|
|
|
ai.launch() |
|
|
|
print("Interface Started!") |