Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,32 +9,133 @@ from functools import lru_cache
|
|
9 |
import time
|
10 |
import requests
|
11 |
from collections import Counter
|
|
|
12 |
|
13 |
st.set_page_config(page_title="HF Contributions", layout="wide", initial_sidebar_state="expanded")
|
14 |
|
15 |
-
#
|
16 |
st.markdown("""
|
17 |
<style>
|
|
|
18 |
[data-testid="stSidebar"] {
|
19 |
-
min-width:
|
20 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
}
|
22 |
</style>
|
23 |
""", unsafe_allow_html=True)
|
24 |
-
api = HfApi()
|
25 |
|
|
|
26 |
|
27 |
# Cache for API responses
|
28 |
@lru_cache(maxsize=1000)
|
29 |
def cached_repo_info(repo_id, repo_type):
|
30 |
return api.repo_info(repo_id=repo_id, repo_type=repo_type)
|
31 |
|
32 |
-
|
33 |
@lru_cache(maxsize=1000)
|
34 |
def cached_list_commits(repo_id, repo_type):
|
35 |
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))
|
36 |
|
37 |
-
|
38 |
@lru_cache(maxsize=100)
|
39 |
def cached_list_items(username, kind):
|
40 |
if kind == "model":
|
@@ -45,7 +146,6 @@ def cached_list_items(username, kind):
|
|
45 |
return list(api.list_spaces(author=username))
|
46 |
return []
|
47 |
|
48 |
-
|
49 |
# Function to fetch trending accounts and create stats
|
50 |
@lru_cache(maxsize=1)
|
51 |
def get_trending_accounts(limit=100):
|
@@ -126,7 +226,6 @@ def get_trending_accounts(limit=100):
|
|
126 |
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
|
127 |
return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]
|
128 |
|
129 |
-
|
130 |
# Rate limiting
|
131 |
class RateLimiter:
|
132 |
def __init__(self, calls_per_second=10):
|
@@ -140,10 +239,8 @@ class RateLimiter:
|
|
140 |
time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
|
141 |
self.last_call = time.time()
|
142 |
|
143 |
-
|
144 |
rate_limiter = RateLimiter()
|
145 |
|
146 |
-
|
147 |
# Function to fetch commits for a repository (optimized)
|
148 |
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
|
149 |
try:
|
@@ -151,7 +248,7 @@ def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
|
|
151 |
# Skip private/gated repos upfront
|
152 |
repo_info = cached_repo_info(repo_id, repo_type)
|
153 |
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
|
154 |
-
return [],
|
155 |
|
156 |
# Get initial commit date
|
157 |
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
|
@@ -172,10 +269,9 @@ def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
|
|
172 |
commit_count += 1
|
173 |
|
174 |
return commit_dates, commit_count
|
175 |
-
except Exception:
|
176 |
return [], 0
|
177 |
|
178 |
-
|
179 |
# Function to get commit events for a user (optimized)
|
180 |
def get_commit_events(username, kind=None, selected_year=None):
|
181 |
commit_dates = []
|
@@ -210,7 +306,6 @@ def get_commit_events(username, kind=None, selected_year=None):
|
|
210 |
df = df.drop_duplicates() # Remove any duplicate dates
|
211 |
return df, items_with_type
|
212 |
|
213 |
-
|
214 |
# Calendar heatmap function (optimized)
|
215 |
def make_calendar_heatmap(df, title, year):
|
216 |
if df.empty:
|
@@ -252,7 +347,7 @@ def make_calendar_heatmap(df, title, year):
|
|
252 |
norm = BoundaryNorm(bounds, cmap.N)
|
253 |
|
254 |
# Create plot more efficiently
|
255 |
-
fig, ax = plt.subplots(figsize=(12, 1.
|
256 |
|
257 |
# Convert pivot values to integers to ensure proper color mapping
|
258 |
pivot_int = pivot.astype(int)
|
@@ -261,15 +356,19 @@ def make_calendar_heatmap(df, title, year):
|
|
261 |
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
|
262 |
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])
|
263 |
|
264 |
-
ax.set_title(f"{title}", fontsize=
|
265 |
ax.set_xlabel("")
|
266 |
ax.set_ylabel("")
|
267 |
ax.set_xticks(month_positions)
|
268 |
-
ax.set_xticklabels(month_labels, fontsize=
|
269 |
-
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=
|
|
|
|
|
|
|
|
|
|
|
270 |
st.pyplot(fig)
|
271 |
|
272 |
-
|
273 |
# Function to create a fancy contribution radar chart
|
274 |
def create_contribution_radar(username, models_count, spaces_count, datasets_count, commits_count):
|
275 |
# Create radar chart for contribution metrics
|
@@ -286,31 +385,41 @@ def create_contribution_radar(username, models_count, spaces_count, datasets_cou
|
|
286 |
|
287 |
normalized += normalized[:1] # Close the loop
|
288 |
|
289 |
-
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw={'polar': True})
|
290 |
|
291 |
-
# Add background grid
|
292 |
ax.set_theta_offset(np.pi / 2)
|
293 |
ax.set_theta_direction(-1)
|
294 |
-
ax.set_thetagrids(np.degrees(angles[:-1]), categories)
|
295 |
|
296 |
-
#
|
|
|
|
|
|
|
297 |
ax.fill(angles, normalized, color='#4CAF50', alpha=0.25)
|
298 |
-
ax.plot(angles, normalized, color='#4CAF50', linewidth=
|
299 |
|
300 |
-
# Add value labels
|
301 |
for i, val in enumerate(values):
|
302 |
angle = angles[i]
|
303 |
-
x = normalized[i] * np.cos(angle)
|
304 |
-
y = normalized[i] * np.sin(angle)
|
305 |
-
ax.text(angle, normalized[i] + 0.
|
306 |
-
ha='center', va='center', fontsize=
|
307 |
-
fontweight='bold')
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
-
ax.set_title(f"{username}'s Contribution Profile", fontsize=
|
|
|
|
|
|
|
310 |
|
311 |
return fig
|
312 |
|
313 |
-
|
314 |
# Function to create contribution distribution pie chart
|
315 |
def create_contribution_pie(model_commits, dataset_commits, space_commits):
|
316 |
labels = ['Models', 'Datasets', 'Spaces']
|
@@ -323,22 +432,48 @@ def create_contribution_pie(model_commits, dataset_commits, space_commits):
|
|
323 |
if not filtered_sizes:
|
324 |
return None # No data to show
|
325 |
|
326 |
-
|
327 |
colors = ['#FF9800', '#2196F3', '#4CAF50']
|
328 |
filtered_colors = [color for color, size in zip(colors, sizes) if size > 0]
|
329 |
|
330 |
-
|
331 |
-
explode = [0.05] * len(filtered_sizes) # Explode all slices slightly
|
332 |
|
333 |
-
|
334 |
-
|
335 |
-
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
|
336 |
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
return fig
|
340 |
|
341 |
-
|
342 |
# Function to create monthly activity chart
|
343 |
def create_monthly_activity(df, year):
|
344 |
if df.empty:
|
@@ -346,42 +481,58 @@ def create_monthly_activity(df, year):
|
|
346 |
|
347 |
# Aggregate by month
|
348 |
df['date'] = pd.to_datetime(df['date'])
|
349 |
-
df['month'] = df['date'].dt.
|
350 |
-
|
351 |
-
pd.date_range(start=f'{year}-01-01', end=f'{year}-12-31', freq='MS').strftime('%b')
|
352 |
-
).fillna(0)
|
353 |
|
354 |
-
#
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
|
359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
|
361 |
# Highlight the month with most activity
|
362 |
-
if
|
363 |
-
max_idx =
|
364 |
bars[max_idx].set_color('#FF5722')
|
|
|
|
|
365 |
|
366 |
-
# Add labels and styling
|
367 |
-
ax.set_title(f'Monthly Activity in {year}', fontsize=
|
368 |
-
ax.set_xlabel('Month', fontsize=
|
369 |
-
ax.set_ylabel('Number of Contributions', fontsize=
|
370 |
|
371 |
-
# Add value labels on top of bars
|
372 |
-
for i, count in enumerate(
|
373 |
if count > 0:
|
374 |
-
ax.text(i, count + 0.5, str(int(count)), ha='center', fontsize=
|
375 |
|
376 |
-
# Add grid for better readability
|
377 |
-
ax.grid(axis='y', linestyle='--', alpha=0.7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
-
plt.xticks(rotation=45)
|
380 |
plt.tight_layout()
|
381 |
|
382 |
return fig
|
383 |
|
384 |
-
|
385 |
# Function to render follower growth simulation
|
386 |
def simulate_follower_data(username, spaces_count, models_count, total_commits):
|
387 |
# Simulate follower growth based on contribution metrics
|
@@ -409,73 +560,137 @@ def simulate_follower_data(username, spaces_count, models_count, total_commits):
|
|
409 |
# Ensure end value matches our base_followers estimate
|
410 |
followers[-1] = base_followers
|
411 |
|
412 |
-
# Create the chart
|
413 |
-
fig, ax = plt.subplots(figsize=(
|
414 |
-
ax.plot(dates, followers, marker='o', linestyle='-', color='#9C27B0', markersize=5)
|
415 |
|
416 |
-
#
|
417 |
-
|
418 |
-
|
419 |
-
ax.set_ylabel("Followers", fontsize=12)
|
420 |
|
421 |
-
|
422 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
|
424 |
-
# Format date axis
|
425 |
-
plt.xticks(rotation=45)
|
426 |
plt.tight_layout()
|
427 |
|
428 |
return fig
|
429 |
|
430 |
-
|
431 |
# Function to create ranking position visualization
|
432 |
def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
|
433 |
if not (overall_rank or spaces_rank or models_rank):
|
434 |
return None
|
435 |
|
436 |
-
# Create a horizontal bar chart for rankings
|
437 |
-
fig, ax = plt.subplots(figsize=(
|
438 |
|
439 |
categories = []
|
440 |
positions = []
|
441 |
colors = []
|
|
|
442 |
|
443 |
if overall_rank:
|
444 |
categories.append('Overall')
|
445 |
positions.append(101 - overall_rank) # Invert rank for visualization (higher is better)
|
446 |
colors.append('#673AB7')
|
|
|
447 |
|
448 |
if spaces_rank:
|
449 |
categories.append('Spaces')
|
450 |
positions.append(101 - spaces_rank)
|
451 |
colors.append('#2196F3')
|
|
|
452 |
|
453 |
if models_rank:
|
454 |
categories.append('Models')
|
455 |
positions.append(101 - models_rank)
|
456 |
colors.append('#FF9800')
|
|
|
457 |
|
458 |
-
# Create horizontal bars
|
459 |
-
bars = ax.barh(categories, positions, color=colors, alpha=0.
|
|
|
460 |
|
461 |
-
# Add rank values as text
|
462 |
for i, bar in enumerate(bars):
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
|
|
|
|
|
|
|
|
|
|
470 |
|
471 |
-
#
|
472 |
-
ax.
|
473 |
-
ax.
|
474 |
-
|
475 |
|
476 |
-
#
|
477 |
-
ax.
|
478 |
-
ax.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
|
480 |
# Invert x-axis to show ranking position more intuitively
|
481 |
ax.invert_xaxis()
|
@@ -483,30 +698,23 @@ def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
|
|
483 |
plt.tight_layout()
|
484 |
return fig
|
485 |
|
486 |
-
|
487 |
-
# Import additional libraries for advanced visualizations
|
488 |
-
import numpy as np
|
489 |
-
|
490 |
# Fetch trending accounts with a loading spinner (do this once at the beginning)
|
491 |
with st.spinner("Loading trending accounts..."):
|
492 |
trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)
|
493 |
|
494 |
# Sidebar
|
495 |
with st.sidebar:
|
496 |
-
st.
|
497 |
|
498 |
# Create tabs for Spaces and Models rankings - ONLY SHOWING FIRST TWO TABS
|
499 |
tab1, tab2 = st.tabs([
|
500 |
-
"Top 100 Overall
|
501 |
-
"Top
|
502 |
])
|
503 |
|
504 |
with tab1:
|
505 |
# Show combined trending accounts list
|
506 |
-
st.
|
507 |
-
|
508 |
-
# Display the top 100 accounts list
|
509 |
-
st.markdown("### Combined Contributors Ranking")
|
510 |
|
511 |
# Create a data frame for the table
|
512 |
if trending_accounts:
|
@@ -532,101 +740,68 @@ with st.sidebar:
|
|
532 |
ranking_data_overall,
|
533 |
column_config={
|
534 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
535 |
-
"Spaces Rank": st.column_config.TextColumn("Spaces Rank
|
536 |
-
"Models Rank": st.column_config.TextColumn("Models Rank
|
537 |
},
|
538 |
use_container_width=True,
|
539 |
hide_index=False
|
540 |
)
|
541 |
|
542 |
with tab2:
|
543 |
-
# Show trending accounts
|
544 |
-
st.
|
545 |
-
|
546 |
-
# Display the top 100 accounts list
|
547 |
-
st.markdown("### Spaces Contributors Ranking")
|
548 |
|
549 |
# Create a data frame for the table
|
550 |
if top_owners_spaces:
|
551 |
-
ranking_data_spaces = pd.DataFrame(top_owners_spaces[:
|
552 |
ranking_data_spaces.index = ranking_data_spaces.index + 1 # Start index from 1 for ranking
|
553 |
|
554 |
st.dataframe(
|
555 |
ranking_data_spaces,
|
556 |
column_config={
|
557 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
558 |
-
"Spaces Count": st.column_config.NumberColumn("Spaces Count
|
559 |
},
|
560 |
use_container_width=True,
|
561 |
hide_index=False
|
562 |
)
|
563 |
|
564 |
-
#
|
565 |
-
|
566 |
-
# Create a bar chart for top 30 contributors
|
567 |
-
if top_owners_spaces:
|
568 |
-
chart_data = pd.DataFrame(top_owners_spaces[:30], columns=["Owner", "Spaces Count"])
|
569 |
-
|
570 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
571 |
-
bars = ax.barh(chart_data["Owner"], chart_data["Spaces Count"])
|
572 |
-
|
573 |
-
# Add color gradient to bars
|
574 |
-
for i, bar in enumerate(bars):
|
575 |
-
bar.set_color(plt.cm.viridis(i/len(bars)))
|
576 |
-
|
577 |
-
ax.set_title("Top 30 Contributors by Number of Spaces")
|
578 |
-
ax.set_xlabel("Number of Spaces")
|
579 |
-
plt.tight_layout()
|
580 |
-
st.pyplot(fig)
|
581 |
-
|
582 |
-
# Display the top 100 Models accounts list (ADDED SECTION)
|
583 |
-
st.markdown("### Models Contributors Ranking")
|
584 |
|
585 |
# Create a data frame for the Models table
|
586 |
if top_owners_models:
|
587 |
-
ranking_data_models = pd.DataFrame(top_owners_models[:
|
588 |
ranking_data_models.index = ranking_data_models.index + 1 # Start index from 1 for ranking
|
589 |
|
590 |
st.dataframe(
|
591 |
ranking_data_models,
|
592 |
column_config={
|
593 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
594 |
-
"Models Count": st.column_config.NumberColumn("Models Count
|
595 |
},
|
596 |
use_container_width=True,
|
597 |
hide_index=False
|
598 |
)
|
599 |
-
|
600 |
-
# Add stats expander with visualization for Models (ADDED SECTION)
|
601 |
-
with st.expander("View Top 30 Models Contributors Chart"):
|
602 |
-
# Create a bar chart for top 30 models contributors
|
603 |
-
if top_owners_models:
|
604 |
-
chart_data = pd.DataFrame(top_owners_models[:30], columns=["Owner", "Models Count"])
|
605 |
-
|
606 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
607 |
-
bars = ax.barh(chart_data["Owner"], chart_data["Models Count"])
|
608 |
-
|
609 |
-
# Add color gradient to bars
|
610 |
-
for i, bar in enumerate(bars):
|
611 |
-
bar.set_color(plt.cm.plasma(i/len(bars))) # Using a different colormap for distinction
|
612 |
-
|
613 |
-
ax.set_title("Top 30 Contributors by Number of Models")
|
614 |
-
ax.set_xlabel("Number of Models")
|
615 |
-
plt.tight_layout()
|
616 |
-
st.pyplot(fig)
|
617 |
|
618 |
-
#
|
619 |
-
st.
|
|
|
|
|
|
|
620 |
selected_trending = st.selectbox(
|
621 |
-
"
|
622 |
options=trending_accounts[:100], # Limit to top 100
|
623 |
index=0 if trending_accounts else None,
|
624 |
key="trending_selectbox"
|
625 |
)
|
626 |
|
627 |
-
# Custom account input option
|
628 |
-
st.markdown(
|
629 |
-
custom = st.text_input("Enter username/
|
|
|
|
|
|
|
630 |
|
631 |
# Set username based on selection or custom input
|
632 |
if custom.strip():
|
@@ -636,22 +811,39 @@ with st.sidebar:
|
|
636 |
else:
|
637 |
username = "facebook" # Default fallback
|
638 |
|
639 |
-
# Year selection
|
640 |
-
st.
|
641 |
year_options = list(range(datetime.now().year, 2017, -1))
|
642 |
-
selected_year = st.selectbox("Select Year", options=year_options)
|
643 |
|
644 |
-
# Additional options for customization
|
645 |
-
st.
|
646 |
show_models = st.checkbox("Show Models", value=True)
|
647 |
show_datasets = st.checkbox("Show Datasets", value=True)
|
648 |
show_spaces = st.checkbox("Show Spaces", value=True)
|
649 |
|
650 |
# Main Content
|
651 |
-
st.
|
652 |
|
653 |
if username:
|
654 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
655 |
# Initialize variables for tracking
|
656 |
overall_rank = None
|
657 |
spaces_rank = None
|
@@ -663,14 +855,17 @@ if username:
|
|
663 |
# Display contributor rank if in top 100
|
664 |
if username in trending_accounts[:100]:
|
665 |
overall_rank = trending_accounts.index(username) + 1
|
666 |
-
|
|
|
|
|
|
|
|
|
667 |
|
668 |
# Find user in spaces ranking
|
669 |
for i, (owner, count) in enumerate(top_owners_spaces):
|
670 |
if owner == username:
|
671 |
spaces_rank = i+1
|
672 |
spaces_count = count
|
673 |
-
st.info(f"π Spaces Ranking: #{spaces_rank} with {count} spaces")
|
674 |
break
|
675 |
|
676 |
# Find user in models ranking
|
@@ -678,20 +873,9 @@ if username:
|
|
678 |
if owner == username:
|
679 |
models_rank = i+1
|
680 |
models_count = count
|
681 |
-
st.info(f"π§ Models Ranking: #{models_rank} with {count} models")
|
682 |
break
|
683 |
|
684 |
-
# Display
|
685 |
-
combined_info = []
|
686 |
-
if spaces_rank and spaces_rank <= 100:
|
687 |
-
combined_info.append(f"Spaces: #{spaces_rank}")
|
688 |
-
if models_rank and models_rank <= 100:
|
689 |
-
combined_info.append(f"Models: #{models_rank}")
|
690 |
-
|
691 |
-
if combined_info:
|
692 |
-
st.success(f"Combined Rankings (Top 100): {', '.join(combined_info)}")
|
693 |
-
|
694 |
-
# Add ranking visualization
|
695 |
rank_chart = create_ranking_chart(username, overall_rank, spaces_rank, models_rank)
|
696 |
if rank_chart:
|
697 |
st.pyplot(rank_chart)
|
@@ -713,8 +897,13 @@ if username:
|
|
713 |
st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
|
714 |
st.stop()
|
715 |
|
|
|
|
|
|
|
|
|
|
|
716 |
# Fetch commits for each selected type
|
717 |
-
for kind in types_to_fetch:
|
718 |
try:
|
719 |
items = cached_list_items(username, kind)
|
720 |
|
@@ -728,14 +917,13 @@ if username:
|
|
728 |
|
729 |
repo_ids = [item.id for item in items]
|
730 |
|
731 |
-
|
732 |
|
733 |
# Process repos in chunks
|
734 |
chunk_size = 5
|
735 |
total_commits = 0
|
736 |
all_commit_dates = []
|
737 |
|
738 |
-
progress_bar = st.progress(0)
|
739 |
for i in range(0, len(repo_ids), chunk_size):
|
740 |
chunk = repo_ids[i:i + chunk_size]
|
741 |
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
|
@@ -749,13 +937,12 @@ if username:
|
|
749 |
all_commit_dates.extend(repo_commits)
|
750 |
total_commits += repo_count
|
751 |
|
752 |
-
# Update progress
|
753 |
-
|
754 |
-
|
|
|
|
|
755 |
|
756 |
-
# Complete progress
|
757 |
-
progress_bar.progress(1.0)
|
758 |
-
|
759 |
commits_by_type[kind] = all_commit_dates
|
760 |
commit_counts_by_type[kind] = total_commits
|
761 |
|
@@ -764,72 +951,86 @@ if username:
|
|
764 |
commits_by_type[kind] = []
|
765 |
commit_counts_by_type[kind] = 0
|
766 |
|
|
|
|
|
|
|
|
|
|
|
|
|
767 |
# Calculate total commits across all types
|
768 |
total_commits = sum(commit_counts_by_type.values())
|
769 |
|
770 |
-
|
|
|
|
|
|
|
|
|
771 |
|
772 |
-
# Profile information
|
773 |
-
profile_col1, profile_col2 = st.columns([1, 3])
|
774 |
with profile_col1:
|
775 |
-
#
|
776 |
-
st.
|
777 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
778 |
|
779 |
-
#
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
break
|
784 |
|
785 |
-
|
|
|
|
|
786 |
|
787 |
with profile_col2:
|
788 |
# Display contribution radar chart
|
789 |
radar_fig = create_contribution_radar(username, models_count, spaces_count, datasets_count, total_commits)
|
790 |
st.pyplot(radar_fig)
|
791 |
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
797 |
if not all_df.empty:
|
798 |
-
all_df
|
|
|
|
|
799 |
|
800 |
# Monthly activity chart
|
801 |
-
st.
|
|
|
802 |
monthly_fig = create_monthly_activity(all_df, selected_year)
|
803 |
if monthly_fig:
|
804 |
st.pyplot(monthly_fig)
|
805 |
else:
|
806 |
st.info(f"No activity data available for {username} in {selected_year}")
|
807 |
-
|
808 |
-
# Calendar heatmap for all commits
|
809 |
-
st.subheader(f"Contribution Calendar ({selected_year})")
|
810 |
-
make_calendar_heatmap(all_df, "All Commits", selected_year)
|
811 |
-
|
812 |
-
# Contribution distribution pie chart
|
813 |
-
st.subheader("Contribution Distribution by Type")
|
814 |
-
model_commits = commit_counts_by_type.get("model", 0)
|
815 |
-
dataset_commits = commit_counts_by_type.get("dataset", 0)
|
816 |
-
space_commits = commit_counts_by_type.get("space", 0)
|
817 |
-
|
818 |
-
pie_chart = create_contribution_pie(model_commits, dataset_commits, space_commits)
|
819 |
-
if pie_chart:
|
820 |
-
st.pyplot(pie_chart)
|
821 |
-
else:
|
822 |
-
st.info("No contribution data available to show distribution")
|
823 |
|
824 |
# Follower growth simulation
|
825 |
-
st.
|
826 |
-
st.
|
|
|
|
|
|
|
827 |
follower_chart = simulate_follower_data(username, spaces_count, models_count, total_commits)
|
828 |
st.pyplot(follower_chart)
|
829 |
|
830 |
-
#
|
831 |
if total_commits > 0:
|
832 |
-
st.
|
833 |
|
834 |
# Contribution pattern analysis
|
835 |
monthly_df = pd.DataFrame(all_commits, columns=["date"])
|
@@ -840,58 +1041,104 @@ if username:
|
|
840 |
most_active_month = monthly_df['month'].value_counts().idxmax()
|
841 |
month_name = datetime(2020, most_active_month, 1).strftime('%B')
|
842 |
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
|
|
850 |
|
851 |
# Add ranking context if available
|
852 |
if overall_rank:
|
853 |
percentile = 100 - overall_rank
|
854 |
-
st.markdown(f""
|
855 |
-
|
|
|
|
|
856 |
|
857 |
-
|
858 |
-
""")
|
859 |
|
860 |
if spaces_rank and spaces_rank <= 10:
|
861 |
-
|
862 |
elif spaces_rank and spaces_rank <= 30:
|
863 |
-
|
864 |
|
865 |
if models_rank and models_rank <= 10:
|
866 |
-
|
867 |
elif models_rank and models_rank <= 30:
|
868 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
869 |
|
870 |
-
#
|
871 |
-
st.
|
|
|
|
|
872 |
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
|
873 |
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
896 |
else:
|
897 |
-
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import time
|
10 |
import requests
|
11 |
from collections import Counter
|
12 |
+
import numpy as np
|
13 |
|
14 |
st.set_page_config(page_title="HF Contributions", layout="wide", initial_sidebar_state="expanded")
|
15 |
|
16 |
+
# ν₯μλ UI μ€νμΌλ§
|
17 |
st.markdown("""
|
18 |
<style>
|
19 |
+
/* μ¬μ΄λλ° μ€νμΌλ§ */
|
20 |
[data-testid="stSidebar"] {
|
21 |
+
min-width: 35vw !important;
|
22 |
+
max-width: 35vw !important;
|
23 |
+
background-color: #f8f9fa;
|
24 |
+
padding: 1rem;
|
25 |
+
border-right: 1px solid #e9ecef;
|
26 |
+
}
|
27 |
+
|
28 |
+
/* ν€λ μ€νμΌλ§ */
|
29 |
+
h1, h2, h3 {
|
30 |
+
color: #1e88e5;
|
31 |
+
font-weight: 700;
|
32 |
+
}
|
33 |
+
h1 {
|
34 |
+
font-size: 2.5rem;
|
35 |
+
margin-bottom: 1.5rem;
|
36 |
+
border-bottom: 2px solid #e0e0e0;
|
37 |
+
padding-bottom: 0.5rem;
|
38 |
+
}
|
39 |
+
h2 {
|
40 |
+
font-size: 1.8rem;
|
41 |
+
margin-top: 1.5rem;
|
42 |
+
}
|
43 |
+
h3 {
|
44 |
+
font-size: 1.4rem;
|
45 |
+
margin-top: 1rem;
|
46 |
+
}
|
47 |
+
|
48 |
+
/* μΉ΄λ μ€νμΌλ§ */
|
49 |
+
div[data-testid="stMetric"] {
|
50 |
+
background-color: #f1f8fe;
|
51 |
+
border-radius: 10px;
|
52 |
+
padding: 1rem;
|
53 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
54 |
+
margin-bottom: 1rem;
|
55 |
+
}
|
56 |
+
|
57 |
+
/* μ°¨νΈ μ»¨ν
μ΄λ μ€νμΌλ§ */
|
58 |
+
.chart-container {
|
59 |
+
background-color: white;
|
60 |
+
border-radius: 10px;
|
61 |
+
padding: 1rem;
|
62 |
+
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
63 |
+
margin: 1rem 0;
|
64 |
+
}
|
65 |
+
|
66 |
+
/* ν
μ΄λΈ μ€νμΌλ§ */
|
67 |
+
div[data-testid="stDataFrame"] {
|
68 |
+
background-color: white;
|
69 |
+
border-radius: 10px;
|
70 |
+
padding: 0.5rem;
|
71 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
72 |
+
}
|
73 |
+
|
74 |
+
/* ν μ€νμΌλ§ */
|
75 |
+
button[data-baseweb="tab"] {
|
76 |
+
font-weight: 600;
|
77 |
+
}
|
78 |
+
|
79 |
+
/* μλΈν€λ λ°°κ²½ */
|
80 |
+
.subheader {
|
81 |
+
background-color: #f1f8fe;
|
82 |
+
padding: 0.5rem 1rem;
|
83 |
+
border-radius: 5px;
|
84 |
+
margin-bottom: 1rem;
|
85 |
+
}
|
86 |
+
|
87 |
+
/* μ 보 λ±μ§ */
|
88 |
+
.info-badge {
|
89 |
+
background-color: #e3f2fd;
|
90 |
+
color: #1976d2;
|
91 |
+
padding: 0.3rem 0.7rem;
|
92 |
+
border-radius: 20px;
|
93 |
+
display: inline-block;
|
94 |
+
font-weight: 500;
|
95 |
+
margin-right: 0.5rem;
|
96 |
+
}
|
97 |
+
|
98 |
+
/* νλ‘κ·Έλ μ€ λ° */
|
99 |
+
div[data-testid="stProgress"] {
|
100 |
+
height: 0.5rem !important;
|
101 |
+
}
|
102 |
+
|
103 |
+
/* λ²νΌ μ€νμΌλ§ */
|
104 |
+
.stButton button {
|
105 |
+
background-color: #1e88e5;
|
106 |
+
color: white;
|
107 |
+
border: none;
|
108 |
+
font-weight: 500;
|
109 |
+
}
|
110 |
+
|
111 |
+
/* κ²½κ³ /μ±κ³΅ λ©μμ§ κ°μ */
|
112 |
+
div[data-testid="stAlert"] {
|
113 |
+
border-radius: 10px;
|
114 |
+
margin: 1rem 0;
|
115 |
+
}
|
116 |
+
|
117 |
+
/* μΉ΄ν
κ³ λ¦¬ λΆμ μΉμ
*/
|
118 |
+
.category-section {
|
119 |
+
background-color: white;
|
120 |
+
border-radius: 10px;
|
121 |
+
padding: 1rem;
|
122 |
+
margin-bottom: 1.5rem;
|
123 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
124 |
}
|
125 |
</style>
|
126 |
""", unsafe_allow_html=True)
|
|
|
127 |
|
128 |
+
api = HfApi()
|
129 |
|
130 |
# Cache for API responses
|
131 |
@lru_cache(maxsize=1000)
|
132 |
def cached_repo_info(repo_id, repo_type):
|
133 |
return api.repo_info(repo_id=repo_id, repo_type=repo_type)
|
134 |
|
|
|
135 |
@lru_cache(maxsize=1000)
|
136 |
def cached_list_commits(repo_id, repo_type):
|
137 |
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))
|
138 |
|
|
|
139 |
@lru_cache(maxsize=100)
|
140 |
def cached_list_items(username, kind):
|
141 |
if kind == "model":
|
|
|
146 |
return list(api.list_spaces(author=username))
|
147 |
return []
|
148 |
|
|
|
149 |
# Function to fetch trending accounts and create stats
|
150 |
@lru_cache(maxsize=1)
|
151 |
def get_trending_accounts(limit=100):
|
|
|
226 |
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
|
227 |
return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]
|
228 |
|
|
|
229 |
# Rate limiting
|
230 |
class RateLimiter:
|
231 |
def __init__(self, calls_per_second=10):
|
|
|
239 |
time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
|
240 |
self.last_call = time.time()
|
241 |
|
|
|
242 |
rate_limiter = RateLimiter()
|
243 |
|
|
|
244 |
# Function to fetch commits for a repository (optimized)
|
245 |
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
|
246 |
try:
|
|
|
248 |
# Skip private/gated repos upfront
|
249 |
repo_info = cached_repo_info(repo_id, repo_type)
|
250 |
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
|
251 |
+
return [], 0
|
252 |
|
253 |
# Get initial commit date
|
254 |
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
|
|
|
269 |
commit_count += 1
|
270 |
|
271 |
return commit_dates, commit_count
|
272 |
+
except Exception as e:
|
273 |
return [], 0
|
274 |
|
|
|
275 |
# Function to get commit events for a user (optimized)
|
276 |
def get_commit_events(username, kind=None, selected_year=None):
|
277 |
commit_dates = []
|
|
|
306 |
df = df.drop_duplicates() # Remove any duplicate dates
|
307 |
return df, items_with_type
|
308 |
|
|
|
309 |
# Calendar heatmap function (optimized)
|
310 |
def make_calendar_heatmap(df, title, year):
|
311 |
if df.empty:
|
|
|
347 |
norm = BoundaryNorm(bounds, cmap.N)
|
348 |
|
349 |
# Create plot more efficiently
|
350 |
+
fig, ax = plt.subplots(figsize=(12, 1.5))
|
351 |
|
352 |
# Convert pivot values to integers to ensure proper color mapping
|
353 |
pivot_int = pivot.astype(int)
|
|
|
356 |
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
|
357 |
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])
|
358 |
|
359 |
+
ax.set_title(f"{title}", fontsize=14, pad=10)
|
360 |
ax.set_xlabel("")
|
361 |
ax.set_ylabel("")
|
362 |
ax.set_xticks(month_positions)
|
363 |
+
ax.set_xticklabels(month_labels, fontsize=10)
|
364 |
+
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=10)
|
365 |
+
|
366 |
+
# μκ°μ ν₯μμ μν figure μ€νμΌλ§
|
367 |
+
fig.tight_layout()
|
368 |
+
fig.patch.set_facecolor('#F8F9FA')
|
369 |
+
|
370 |
st.pyplot(fig)
|
371 |
|
|
|
372 |
# Function to create a fancy contribution radar chart
|
373 |
def create_contribution_radar(username, models_count, spaces_count, datasets_count, commits_count):
|
374 |
# Create radar chart for contribution metrics
|
|
|
385 |
|
386 |
normalized += normalized[:1] # Close the loop
|
387 |
|
388 |
+
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw={'polar': True}, facecolor='#F8F9FA')
|
389 |
|
390 |
+
# Add background grid with improved styling
|
391 |
ax.set_theta_offset(np.pi / 2)
|
392 |
ax.set_theta_direction(-1)
|
393 |
+
ax.set_thetagrids(np.degrees(angles[:-1]), categories, fontsize=12, fontweight='bold')
|
394 |
|
395 |
+
# 그리λ μ€νμΌλ§ κ°μ
|
396 |
+
ax.grid(color='#CCCCCC', linestyle='-', linewidth=0.5, alpha=0.7)
|
397 |
+
|
398 |
+
# Draw the chart with improved color scheme
|
399 |
ax.fill(angles, normalized, color='#4CAF50', alpha=0.25)
|
400 |
+
ax.plot(angles, normalized, color='#4CAF50', linewidth=3)
|
401 |
|
402 |
+
# Add value labels with improved styling
|
403 |
for i, val in enumerate(values):
|
404 |
angle = angles[i]
|
405 |
+
x = (normalized[i] + 0.1) * np.cos(angle)
|
406 |
+
y = (normalized[i] + 0.1) * np.sin(angle)
|
407 |
+
ax.text(angle, normalized[i] + 0.1, str(val),
|
408 |
+
ha='center', va='center', fontsize=12,
|
409 |
+
fontweight='bold', color='#1976D2')
|
410 |
+
|
411 |
+
# Add highlight circles
|
412 |
+
circles = [0.25, 0.5, 0.75, 1.0]
|
413 |
+
for circle in circles:
|
414 |
+
ax.plot(angles, [circle] * len(angles), color='gray', alpha=0.3, linewidth=0.5, linestyle='--')
|
415 |
|
416 |
+
ax.set_title(f"{username}'s Contribution Profile", fontsize=16, pad=20, fontweight='bold')
|
417 |
+
|
418 |
+
# λ°°κ²½ μ μμ κΈ°
|
419 |
+
ax.set_facecolor('#F8F9FA')
|
420 |
|
421 |
return fig
|
422 |
|
|
|
423 |
# Function to create contribution distribution pie chart
|
424 |
def create_contribution_pie(model_commits, dataset_commits, space_commits):
|
425 |
labels = ['Models', 'Datasets', 'Spaces']
|
|
|
432 |
if not filtered_sizes:
|
433 |
return None # No data to show
|
434 |
|
435 |
+
# Use a more attractive color scheme
|
436 |
colors = ['#FF9800', '#2196F3', '#4CAF50']
|
437 |
filtered_colors = [color for color, size in zip(colors, sizes) if size > 0]
|
438 |
|
439 |
+
fig, ax = plt.subplots(figsize=(7, 7), facecolor='#F8F9FA')
|
|
|
440 |
|
441 |
+
# Create exploded pie chart with improved styling
|
442 |
+
explode = [0.1] * len(filtered_sizes) # Explode all slices for better visualization
|
|
|
443 |
|
444 |
+
wedges, texts, autotexts = ax.pie(
|
445 |
+
filtered_sizes,
|
446 |
+
labels=None, # We'll add custom labels
|
447 |
+
colors=filtered_colors,
|
448 |
+
autopct='%1.1f%%',
|
449 |
+
startangle=90,
|
450 |
+
shadow=True,
|
451 |
+
explode=explode,
|
452 |
+
textprops={'fontsize': 14, 'weight': 'bold'},
|
453 |
+
wedgeprops={'edgecolor': 'white', 'linewidth': 2}
|
454 |
+
)
|
455 |
+
|
456 |
+
# Customize the percentage text
|
457 |
+
for autotext in autotexts:
|
458 |
+
autotext.set_color('white')
|
459 |
+
autotext.set_fontsize(12)
|
460 |
+
autotext.set_weight('bold')
|
461 |
+
|
462 |
+
# Add legend with custom styling
|
463 |
+
ax.legend(
|
464 |
+
wedges,
|
465 |
+
[f"{label} ({size})" for label, size in zip(filtered_labels, filtered_sizes)],
|
466 |
+
title="Contribution Types",
|
467 |
+
loc="center left",
|
468 |
+
bbox_to_anchor=(0.85, 0.5),
|
469 |
+
fontsize=12
|
470 |
+
)
|
471 |
+
|
472 |
+
ax.set_title('Distribution of Contributions by Type', fontsize=16, pad=20, fontweight='bold')
|
473 |
+
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
|
474 |
|
475 |
return fig
|
476 |
|
|
|
477 |
# Function to create monthly activity chart
|
478 |
def create_monthly_activity(df, year):
|
479 |
if df.empty:
|
|
|
481 |
|
482 |
# Aggregate by month
|
483 |
df['date'] = pd.to_datetime(df['date'])
|
484 |
+
df['month'] = df['date'].dt.month
|
485 |
+
df['month_name'] = df['date'].dt.strftime('%b')
|
|
|
|
|
486 |
|
487 |
+
# Count by month and ensure all months are present
|
488 |
+
month_order = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
489 |
+
counts_by_month = df.groupby('month_name')['date'].count()
|
490 |
+
monthly_counts = pd.Series([counts_by_month.get(m, 0) for m in month_order], index=month_order)
|
491 |
|
492 |
+
# Create bar chart with improved styling
|
493 |
+
fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
|
494 |
+
|
495 |
+
# Create bars with gradient colors based on activity level
|
496 |
+
norm = plt.Normalize(0, monthly_counts.max() if monthly_counts.max() > 0 else 1)
|
497 |
+
colors = plt.cm.viridis(norm(monthly_counts.values))
|
498 |
+
|
499 |
+
bars = ax.bar(monthly_counts.index, monthly_counts.values, color=colors, width=0.7)
|
500 |
|
501 |
# Highlight the month with most activity
|
502 |
+
if monthly_counts.max() > 0:
|
503 |
+
max_idx = monthly_counts.argmax()
|
504 |
bars[max_idx].set_color('#FF5722')
|
505 |
+
bars[max_idx].set_edgecolor('black')
|
506 |
+
bars[max_idx].set_linewidth(1.5)
|
507 |
|
508 |
+
# Add labels and styling with enhanced design
|
509 |
+
ax.set_title(f'Monthly Activity in {year}', fontsize=18, pad=20, fontweight='bold')
|
510 |
+
ax.set_xlabel('Month', fontsize=14, labelpad=10)
|
511 |
+
ax.set_ylabel('Number of Contributions', fontsize=14, labelpad=10)
|
512 |
|
513 |
+
# Add value labels on top of bars with improved styling
|
514 |
+
for i, count in enumerate(monthly_counts.values):
|
515 |
if count > 0:
|
516 |
+
ax.text(i, count + 0.5, str(int(count)), ha='center', fontsize=12, fontweight='bold')
|
517 |
|
518 |
+
# Add grid for better readability with improved styling
|
519 |
+
ax.grid(axis='y', linestyle='--', alpha=0.7, color='#CCCCCC')
|
520 |
+
ax.set_axisbelow(True) # Grid lines behind bars
|
521 |
+
|
522 |
+
# Style the chart borders and background
|
523 |
+
ax.spines['top'].set_visible(False)
|
524 |
+
ax.spines['right'].set_visible(False)
|
525 |
+
ax.spines['left'].set_linewidth(0.5)
|
526 |
+
ax.spines['bottom'].set_linewidth(0.5)
|
527 |
+
|
528 |
+
# Adjust tick parameters for better look
|
529 |
+
ax.tick_params(axis='x', labelsize=12, pad=5)
|
530 |
+
ax.tick_params(axis='y', labelsize=12, pad=5)
|
531 |
|
|
|
532 |
plt.tight_layout()
|
533 |
|
534 |
return fig
|
535 |
|
|
|
536 |
# Function to render follower growth simulation
|
537 |
def simulate_follower_data(username, spaces_count, models_count, total_commits):
|
538 |
# Simulate follower growth based on contribution metrics
|
|
|
560 |
# Ensure end value matches our base_followers estimate
|
561 |
followers[-1] = base_followers
|
562 |
|
563 |
+
# Create the chart with improved styling
|
564 |
+
fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
|
|
|
565 |
|
566 |
+
# Create gradient line for better visualization
|
567 |
+
points = np.array([dates, followers]).T.reshape(-1, 1, 2)
|
568 |
+
segments = np.concatenate([points[:-1], points[1:]], axis=1)
|
|
|
569 |
|
570 |
+
from matplotlib.collections import LineCollection
|
571 |
+
norm = plt.Normalize(0, len(segments))
|
572 |
+
lc = LineCollection(segments, cmap='viridis', norm=norm, linewidth=3, alpha=0.8)
|
573 |
+
lc.set_array(np.arange(len(segments)))
|
574 |
+
line = ax.add_collection(lc)
|
575 |
+
|
576 |
+
# Add markers
|
577 |
+
ax.scatter(dates, followers, s=50, color='#9C27B0', alpha=0.8, zorder=10)
|
578 |
+
|
579 |
+
# Add styling with enhanced design
|
580 |
+
ax.set_title(f"Estimated Follower Growth for {username}", fontsize=18, pad=20, fontweight='bold')
|
581 |
+
ax.set_xlabel("Date", fontsize=14, labelpad=10)
|
582 |
+
ax.set_ylabel("Followers", fontsize=14, labelpad=10)
|
583 |
+
|
584 |
+
# Format the axes limits
|
585 |
+
ax.set_xlim(dates.min(), dates.max())
|
586 |
+
ax.set_ylim(0, max(followers) * 1.1)
|
587 |
+
|
588 |
+
# Add grid for better readability with improved styling
|
589 |
+
ax.grid(True, linestyle='--', alpha=0.7, color='#CCCCCC')
|
590 |
+
ax.set_axisbelow(True) # Grid lines behind plot
|
591 |
+
|
592 |
+
# Style the chart borders and background
|
593 |
+
ax.spines['top'].set_visible(False)
|
594 |
+
ax.spines['right'].set_visible(False)
|
595 |
+
ax.spines['left'].set_linewidth(0.5)
|
596 |
+
ax.spines['bottom'].set_linewidth(0.5)
|
597 |
+
|
598 |
+
# Adjust tick parameters for better look
|
599 |
+
ax.tick_params(axis='x', labelsize=12, rotation=45)
|
600 |
+
ax.tick_params(axis='y', labelsize=12)
|
601 |
+
|
602 |
+
# Add annotations for start and end points
|
603 |
+
ax.annotate(f"Start: {followers[0]}",
|
604 |
+
xy=(dates[0], followers[0]),
|
605 |
+
xytext=(10, 10),
|
606 |
+
textcoords='offset points',
|
607 |
+
fontsize=12,
|
608 |
+
fontweight='bold',
|
609 |
+
color='#9C27B0',
|
610 |
+
bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
|
611 |
+
|
612 |
+
ax.annotate(f"Current: {followers[-1]}",
|
613 |
+
xy=(dates[-1], followers[-1]),
|
614 |
+
xytext=(-10, 10),
|
615 |
+
textcoords='offset points',
|
616 |
+
fontsize=12,
|
617 |
+
fontweight='bold',
|
618 |
+
color='#9C27B0',
|
619 |
+
ha='right',
|
620 |
+
bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
|
621 |
|
|
|
|
|
622 |
plt.tight_layout()
|
623 |
|
624 |
return fig
|
625 |
|
|
|
626 |
# Function to create ranking position visualization
|
627 |
def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
|
628 |
if not (overall_rank or spaces_rank or models_rank):
|
629 |
return None
|
630 |
|
631 |
+
# Create a horizontal bar chart for rankings with improved styling
|
632 |
+
fig, ax = plt.subplots(figsize=(12, 5), facecolor='#F8F9FA')
|
633 |
|
634 |
categories = []
|
635 |
positions = []
|
636 |
colors = []
|
637 |
+
rank_values = []
|
638 |
|
639 |
if overall_rank:
|
640 |
categories.append('Overall')
|
641 |
positions.append(101 - overall_rank) # Invert rank for visualization (higher is better)
|
642 |
colors.append('#673AB7')
|
643 |
+
rank_values.append(overall_rank)
|
644 |
|
645 |
if spaces_rank:
|
646 |
categories.append('Spaces')
|
647 |
positions.append(101 - spaces_rank)
|
648 |
colors.append('#2196F3')
|
649 |
+
rank_values.append(spaces_rank)
|
650 |
|
651 |
if models_rank:
|
652 |
categories.append('Models')
|
653 |
positions.append(101 - models_rank)
|
654 |
colors.append('#FF9800')
|
655 |
+
rank_values.append(models_rank)
|
656 |
|
657 |
+
# Create horizontal bars with enhanced styling
|
658 |
+
bars = ax.barh(categories, positions, color=colors, alpha=0.8, height=0.6,
|
659 |
+
edgecolor='white', linewidth=1.5)
|
660 |
|
661 |
+
# Add rank values as text with improved styling
|
662 |
for i, bar in enumerate(bars):
|
663 |
+
ax.text(bar.get_width() + 2, bar.get_y() + bar.get_height()/2,
|
664 |
+
f'Rank #{rank_values[i]}', va='center', fontsize=12,
|
665 |
+
fontweight='bold', color=colors[i])
|
666 |
+
|
667 |
+
# Set chart properties with enhanced styling
|
668 |
+
ax.set_xlim(0, 105)
|
669 |
+
ax.set_title(f"Ranking Positions for {username} (Top 100)", fontsize=18, pad=20, fontweight='bold')
|
670 |
+
ax.set_xlabel("Percentile (higher is better)", fontsize=14, labelpad=10)
|
671 |
+
|
672 |
+
# Add explanatory text
|
673 |
+
ax.text(50, -0.6, "β Lower rank (higher number) | Higher rank (lower number) β",
|
674 |
+
ha='center', va='center', fontsize=10, fontweight='bold', color='#666666')
|
675 |
|
676 |
+
# Add a vertical line at 90th percentile to highlight top 10 with improved styling
|
677 |
+
ax.axvline(x=90, color='#FF5252', linestyle='--', alpha=0.7, linewidth=2)
|
678 |
+
ax.text(92, len(categories)/2, 'Top 10', color='#D32F2F', fontsize=12,
|
679 |
+
rotation=90, va='center', fontweight='bold')
|
680 |
|
681 |
+
# Style the chart borders and background
|
682 |
+
ax.spines['top'].set_visible(False)
|
683 |
+
ax.spines['right'].set_visible(False)
|
684 |
+
ax.spines['left'].set_linewidth(0.5)
|
685 |
+
ax.spines['bottom'].set_linewidth(0.5)
|
686 |
+
|
687 |
+
# Adjust tick parameters for better look
|
688 |
+
ax.tick_params(axis='x', labelsize=12)
|
689 |
+
ax.tick_params(axis='y', labelsize=14, pad=5)
|
690 |
+
|
691 |
+
# Add grid for better readability
|
692 |
+
ax.grid(axis='x', linestyle='--', alpha=0.5, color='#CCCCCC')
|
693 |
+
ax.set_axisbelow(True) # Grid lines behind bars
|
694 |
|
695 |
# Invert x-axis to show ranking position more intuitively
|
696 |
ax.invert_xaxis()
|
|
|
698 |
plt.tight_layout()
|
699 |
return fig
|
700 |
|
|
|
|
|
|
|
|
|
701 |
# Fetch trending accounts with a loading spinner (do this once at the beginning)
|
702 |
with st.spinner("Loading trending accounts..."):
|
703 |
trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)
|
704 |
|
705 |
# Sidebar
|
706 |
with st.sidebar:
|
707 |
+
st.markdown('<h1 style="text-align: center; color: #1E88E5;">π€ Contributor</h1>', unsafe_allow_html=True)
|
708 |
|
709 |
# Create tabs for Spaces and Models rankings - ONLY SHOWING FIRST TWO TABS
|
710 |
tab1, tab2 = st.tabs([
|
711 |
+
"Top 100 Overall",
|
712 |
+
"Top Spaces & Models"
|
713 |
])
|
714 |
|
715 |
with tab1:
|
716 |
# Show combined trending accounts list
|
717 |
+
st.markdown('<div class="subheader"><h3>π₯ Top 100 Contributors</h3></div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
718 |
|
719 |
# Create a data frame for the table
|
720 |
if trending_accounts:
|
|
|
740 |
ranking_data_overall,
|
741 |
column_config={
|
742 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
743 |
+
"Spaces Rank": st.column_config.TextColumn("Spaces Rank"),
|
744 |
+
"Models Rank": st.column_config.TextColumn("Models Rank")
|
745 |
},
|
746 |
use_container_width=True,
|
747 |
hide_index=False
|
748 |
)
|
749 |
|
750 |
with tab2:
|
751 |
+
# Show trending accounts by Spaces & Models
|
752 |
+
st.markdown('<div class="subheader"><h3>π Spaces Leaders</h3></div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
753 |
|
754 |
# Create a data frame for the table
|
755 |
if top_owners_spaces:
|
756 |
+
ranking_data_spaces = pd.DataFrame(top_owners_spaces[:50], columns=["Contributor", "Spaces Count"])
|
757 |
ranking_data_spaces.index = ranking_data_spaces.index + 1 # Start index from 1 for ranking
|
758 |
|
759 |
st.dataframe(
|
760 |
ranking_data_spaces,
|
761 |
column_config={
|
762 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
763 |
+
"Spaces Count": st.column_config.NumberColumn("Spaces Count", format="%d")
|
764 |
},
|
765 |
use_container_width=True,
|
766 |
hide_index=False
|
767 |
)
|
768 |
|
769 |
+
# Display the top Models accounts list
|
770 |
+
st.markdown('<div class="subheader"><h3>π§ Models Leaders</h3></div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
771 |
|
772 |
# Create a data frame for the Models table
|
773 |
if top_owners_models:
|
774 |
+
ranking_data_models = pd.DataFrame(top_owners_models[:50], columns=["Contributor", "Models Count"])
|
775 |
ranking_data_models.index = ranking_data_models.index + 1 # Start index from 1 for ranking
|
776 |
|
777 |
st.dataframe(
|
778 |
ranking_data_models,
|
779 |
column_config={
|
780 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
781 |
+
"Models Count": st.column_config.NumberColumn("Models Count", format="%d")
|
782 |
},
|
783 |
use_container_width=True,
|
784 |
hide_index=False
|
785 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
786 |
|
787 |
+
# Add visual divider
|
788 |
+
st.markdown('<hr style="margin: 2rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
|
789 |
+
|
790 |
+
# Display contributor selection with enhanced styling
|
791 |
+
st.markdown('<div class="subheader"><h3>Select Contributor</h3></div>', unsafe_allow_html=True)
|
792 |
selected_trending = st.selectbox(
|
793 |
+
"Choose from trending accounts",
|
794 |
options=trending_accounts[:100], # Limit to top 100
|
795 |
index=0 if trending_accounts else None,
|
796 |
key="trending_selectbox"
|
797 |
)
|
798 |
|
799 |
+
# Custom account input option with enhanced styling
|
800 |
+
st.markdown('<div style="text-align: center; margin: 15px 0; font-weight: bold;">- OR -</div>', unsafe_allow_html=True)
|
801 |
+
custom = st.text_input("Enter a username/organization:", placeholder="e.g. facebook, google...")
|
802 |
+
|
803 |
+
# Add visual divider
|
804 |
+
st.markdown('<hr style="margin: 1.5rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
|
805 |
|
806 |
# Set username based on selection or custom input
|
807 |
if custom.strip():
|
|
|
811 |
else:
|
812 |
username = "facebook" # Default fallback
|
813 |
|
814 |
+
# Year selection with enhanced styling
|
815 |
+
st.markdown('<div class="subheader"><h3>ποΈ Time Period</h3></div>', unsafe_allow_html=True)
|
816 |
year_options = list(range(datetime.now().year, 2017, -1))
|
817 |
+
selected_year = st.selectbox("Select Year:", options=year_options)
|
818 |
|
819 |
+
# Additional options for customization with enhanced styling
|
820 |
+
st.markdown('<div class="subheader"><h3>βοΈ Display Options</h3></div>', unsafe_allow_html=True)
|
821 |
show_models = st.checkbox("Show Models", value=True)
|
822 |
show_datasets = st.checkbox("Show Datasets", value=True)
|
823 |
show_spaces = st.checkbox("Show Spaces", value=True)
|
824 |
|
825 |
# Main Content
|
826 |
+
st.markdown(f'<h1 style="text-align: center; color: #1E88E5; margin-bottom: 2rem;">π€ Hugging Face Contributions</h1>', unsafe_allow_html=True)
|
827 |
|
828 |
if username:
|
829 |
+
# Create a header card with contributor info
|
830 |
+
header_col1, header_col2 = st.columns([1, 2])
|
831 |
+
with header_col1:
|
832 |
+
st.markdown(f'<div style="background-color: #E3F2FD; padding: 20px; border-radius: 10px; border-left: 5px solid #1E88E5;">'
|
833 |
+
f'<h2 style="color: #1E88E5;">π€ {username}</h2>'
|
834 |
+
f'<p style="font-size: 16px;">Analyzing contributions for {selected_year}</p>'
|
835 |
+
f'<p><a href="https://huggingface.co/{username}" target="_blank" style="color: #1E88E5; font-weight: bold;">View Profile</a></p>'
|
836 |
+
f'</div>', unsafe_allow_html=True)
|
837 |
+
|
838 |
+
with header_col2:
|
839 |
+
# Add explanation about the app
|
840 |
+
st.markdown(f'<div style="background-color: #F3E5F5; padding: 20px; border-radius: 10px; border-left: 5px solid #9C27B0;">'
|
841 |
+
f'<h3 style="color: #9C27B0;">About This Analysis</h3>'
|
842 |
+
f'<p>This dashboard analyzes {username}\'s contributions to Hugging Face in {selected_year}, including models, datasets, and spaces.</p>'
|
843 |
+
f'<p style="font-style: italic; font-size: 12px;">* Some metrics like follower growth are simulated for visualization purposes.</p>'
|
844 |
+
f'</div>', unsafe_allow_html=True)
|
845 |
+
|
846 |
+
with st.spinner(f"Fetching contribution data for {username}..."):
|
847 |
# Initialize variables for tracking
|
848 |
overall_rank = None
|
849 |
spaces_rank = None
|
|
|
855 |
# Display contributor rank if in top 100
|
856 |
if username in trending_accounts[:100]:
|
857 |
overall_rank = trending_accounts.index(username) + 1
|
858 |
+
|
859 |
+
# Create a prominent ranking display
|
860 |
+
st.markdown(f'<div style="background-color: #FFF8E1; padding: 20px; border-radius: 10px; border-left: 5px solid #FFC107; margin: 1rem 0;">'
|
861 |
+
f'<h2 style="color: #FFA000; text-align: center;">π Ranked #{overall_rank} in Top Contributors</h2>'
|
862 |
+
f'</div>', unsafe_allow_html=True)
|
863 |
|
864 |
# Find user in spaces ranking
|
865 |
for i, (owner, count) in enumerate(top_owners_spaces):
|
866 |
if owner == username:
|
867 |
spaces_rank = i+1
|
868 |
spaces_count = count
|
|
|
869 |
break
|
870 |
|
871 |
# Find user in models ranking
|
|
|
873 |
if owner == username:
|
874 |
models_rank = i+1
|
875 |
models_count = count
|
|
|
876 |
break
|
877 |
|
878 |
+
# Display ranking visualization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
879 |
rank_chart = create_ranking_chart(username, overall_rank, spaces_rank, models_rank)
|
880 |
if rank_chart:
|
881 |
st.pyplot(rank_chart)
|
|
|
897 |
st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
|
898 |
st.stop()
|
899 |
|
900 |
+
# Create a progress container
|
901 |
+
progress_container = st.container()
|
902 |
+
progress_container.markdown('<h3 style="color: #1E88E5;">Fetching Repository Data...</h3>', unsafe_allow_html=True)
|
903 |
+
progress_bar = progress_container.progress(0)
|
904 |
+
|
905 |
# Fetch commits for each selected type
|
906 |
+
for type_index, kind in enumerate(types_to_fetch):
|
907 |
try:
|
908 |
items = cached_list_items(username, kind)
|
909 |
|
|
|
917 |
|
918 |
repo_ids = [item.id for item in items]
|
919 |
|
920 |
+
progress_container.info(f"Found {len(repo_ids)} {kind}s for {username}")
|
921 |
|
922 |
# Process repos in chunks
|
923 |
chunk_size = 5
|
924 |
total_commits = 0
|
925 |
all_commit_dates = []
|
926 |
|
|
|
927 |
for i in range(0, len(repo_ids), chunk_size):
|
928 |
chunk = repo_ids[i:i + chunk_size]
|
929 |
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
|
|
|
937 |
all_commit_dates.extend(repo_commits)
|
938 |
total_commits += repo_count
|
939 |
|
940 |
+
# Update progress for all types
|
941 |
+
progress_per_type = 1.0 / len(types_to_fetch)
|
942 |
+
current_type_progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids)))
|
943 |
+
overall_progress = (type_index * progress_per_type) + (current_type_progress * progress_per_type)
|
944 |
+
progress_bar.progress(overall_progress)
|
945 |
|
|
|
|
|
|
|
946 |
commits_by_type[kind] = all_commit_dates
|
947 |
commit_counts_by_type[kind] = total_commits
|
948 |
|
|
|
951 |
commits_by_type[kind] = []
|
952 |
commit_counts_by_type[kind] = 0
|
953 |
|
954 |
+
# Complete progress
|
955 |
+
progress_bar.progress(1.0)
|
956 |
+
progress_container.success("Data fetching complete!")
|
957 |
+
time.sleep(0.5) # Short pause for visual feedback
|
958 |
+
progress_container.empty() # Clear the progress indicators
|
959 |
+
|
960 |
# Calculate total commits across all types
|
961 |
total_commits = sum(commit_counts_by_type.values())
|
962 |
|
963 |
+
# Main dashboard layout with improved structure
|
964 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Activity Overview</h2>', unsafe_allow_html=True)
|
965 |
+
|
966 |
+
# Profile summary
|
967 |
+
profile_col1, profile_col2 = st.columns([1, 2])
|
968 |
|
|
|
|
|
969 |
with profile_col1:
|
970 |
+
# Create a stats card with key metrics
|
971 |
+
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
|
972 |
+
f'<h3 style="color: #1E88E5; text-align: center; margin-bottom: 15px;">Contribution Stats</h3>'
|
973 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
974 |
+
f'<span style="font-weight: bold;">Total Commits:</span><span>{total_commits}</span></div>'
|
975 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
976 |
+
f'<span style="font-weight: bold;">Models:</span><span>{models_count}</span></div>'
|
977 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
978 |
+
f'<span style="font-weight: bold;">Datasets:</span><span>{datasets_count}</span></div>'
|
979 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
|
980 |
+
f'<span style="font-weight: bold;">Spaces:</span><span>{spaces_count}</span></div>'
|
981 |
+
f'</div>', unsafe_allow_html=True)
|
982 |
|
983 |
+
# Type breakdown pie chart
|
984 |
+
model_commits = commit_counts_by_type.get("model", 0)
|
985 |
+
dataset_commits = commit_counts_by_type.get("dataset", 0)
|
986 |
+
space_commits = commit_counts_by_type.get("space", 0)
|
|
|
987 |
|
988 |
+
pie_chart = create_contribution_pie(model_commits, dataset_commits, space_commits)
|
989 |
+
if pie_chart:
|
990 |
+
st.pyplot(pie_chart)
|
991 |
|
992 |
with profile_col2:
|
993 |
# Display contribution radar chart
|
994 |
radar_fig = create_contribution_radar(username, models_count, spaces_count, datasets_count, total_commits)
|
995 |
st.pyplot(radar_fig)
|
996 |
|
997 |
+
# Create DataFrame for all commits
|
998 |
+
all_commits = []
|
999 |
+
for commits in commits_by_type.values():
|
1000 |
+
all_commits.extend(commits)
|
1001 |
+
all_df = pd.DataFrame(all_commits, columns=["date"])
|
1002 |
+
if not all_df.empty:
|
1003 |
+
all_df = all_df.drop_duplicates() # Remove any duplicate dates
|
1004 |
+
|
1005 |
+
# Calendar heatmap for all commits in a separate section
|
1006 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Contribution Calendar</h2>', unsafe_allow_html=True)
|
1007 |
+
|
1008 |
if not all_df.empty:
|
1009 |
+
make_calendar_heatmap(all_df, "All Contributions", selected_year)
|
1010 |
+
else:
|
1011 |
+
st.info(f"No contributions found for {username} in {selected_year}")
|
1012 |
|
1013 |
# Monthly activity chart
|
1014 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Monthly Activity</h2>', unsafe_allow_html=True)
|
1015 |
+
|
1016 |
monthly_fig = create_monthly_activity(all_df, selected_year)
|
1017 |
if monthly_fig:
|
1018 |
st.pyplot(monthly_fig)
|
1019 |
else:
|
1020 |
st.info(f"No activity data available for {username} in {selected_year}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1021 |
|
1022 |
# Follower growth simulation
|
1023 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Growth Projection</h2>', unsafe_allow_html=True)
|
1024 |
+
st.markdown('<div style="background-color: #EDE7F6; padding: 10px; border-radius: 5px; margin-bottom: 15px;">'
|
1025 |
+
'<p style="font-style: italic; margin: 0;">π This is a simulation based on contribution metrics - for visualization purposes only</p>'
|
1026 |
+
'</div>', unsafe_allow_html=True)
|
1027 |
+
|
1028 |
follower_chart = simulate_follower_data(username, spaces_count, models_count, total_commits)
|
1029 |
st.pyplot(follower_chart)
|
1030 |
|
1031 |
+
# Analytics summary section
|
1032 |
if total_commits > 0:
|
1033 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">π Analytics Summary</h2>', unsafe_allow_html=True)
|
1034 |
|
1035 |
# Contribution pattern analysis
|
1036 |
monthly_df = pd.DataFrame(all_commits, columns=["date"])
|
|
|
1041 |
most_active_month = monthly_df['month'].value_counts().idxmax()
|
1042 |
month_name = datetime(2020, most_active_month, 1).strftime('%B')
|
1043 |
|
1044 |
+
# Create a summary card
|
1045 |
+
st.markdown(f'<div style="background-color: white; padding: 25px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
|
1046 |
+
f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Activity Analysis for {username}</h3>'
|
1047 |
+
f'<ul style="list-style-type: none; padding-left: 5px;">'
|
1048 |
+
f'<li style="margin: 15px 0; font-size: 16px;">π <strong>Total Activity:</strong> {total_commits} contributions in {selected_year}</li>'
|
1049 |
+
f'<li style="margin: 15px 0; font-size: 16px;">ποΈ <strong>Most Active Month:</strong> {month_name} with {monthly_df["month"].value_counts().max()} contributions</li>'
|
1050 |
+
f'<li style="margin: 15px 0; font-size: 16px;">π§© <strong>Repository Breakdown:</strong> {models_count} Models, {spaces_count} Spaces, {datasets_count} Datasets</li>'
|
1051 |
+
f'</ul>', unsafe_allow_html=True)
|
1052 |
|
1053 |
# Add ranking context if available
|
1054 |
if overall_rank:
|
1055 |
percentile = 100 - overall_rank
|
1056 |
+
st.markdown(f'<div style="margin-top: 20px;">'
|
1057 |
+
f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Ranking Analysis</h3>'
|
1058 |
+
f'<ul style="list-style-type: none; padding-left: 5px;">'
|
1059 |
+
f'<li style="margin: 15px 0; font-size: 16px;">π <strong>Overall Ranking:</strong> #{overall_rank} (Top {percentile}% of contributors)</li>', unsafe_allow_html=True)
|
1060 |
|
1061 |
+
badge_html = '<div style="margin: 20px 0;">'
|
|
|
1062 |
|
1063 |
if spaces_rank and spaces_rank <= 10:
|
1064 |
+
badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">π Elite Spaces Contributor (#{spaces_rank})</span>'
|
1065 |
elif spaces_rank and spaces_rank <= 30:
|
1066 |
+
badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">β¨ Outstanding Spaces Contributor (#{spaces_rank})</span>'
|
1067 |
|
1068 |
if models_rank and models_rank <= 10:
|
1069 |
+
badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">π Elite Models Contributor (#{models_rank})</span>'
|
1070 |
elif models_rank and models_rank <= 30:
|
1071 |
+
badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">β¨ Outstanding Models Contributor (#{models_rank})</span>'
|
1072 |
+
|
1073 |
+
badge_html += '</div>'
|
1074 |
+
|
1075 |
+
# Add achievement badges
|
1076 |
+
if spaces_rank or models_rank:
|
1077 |
+
st.markdown(badge_html, unsafe_allow_html=True)
|
1078 |
+
|
1079 |
+
st.markdown('</ul></div></div>', unsafe_allow_html=True)
|
1080 |
|
1081 |
+
# Detailed category analysis section
|
1082 |
+
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Detailed Category Analysis</h2>', unsafe_allow_html=True)
|
1083 |
+
|
1084 |
+
# Create category cards in columns
|
1085 |
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
|
1086 |
|
1087 |
+
category_icons = {
|
1088 |
+
"model": "π§ ",
|
1089 |
+
"dataset": "π¦",
|
1090 |
+
"space": "π"
|
1091 |
+
}
|
1092 |
+
|
1093 |
+
category_colors = {
|
1094 |
+
"model": "#FF9800",
|
1095 |
+
"dataset": "#2196F3",
|
1096 |
+
"space": "#4CAF50"
|
1097 |
+
}
|
1098 |
+
|
1099 |
+
for i, kind in enumerate(types_to_fetch):
|
1100 |
+
with cols[i]:
|
1101 |
+
try:
|
1102 |
+
emoji = category_icons.get(kind, "π")
|
1103 |
+
label = kind.capitalize() + "s"
|
1104 |
+
color = category_colors.get(kind, "#1E88E5")
|
1105 |
+
|
1106 |
+
total = len(cached_list_items(username, kind))
|
1107 |
+
commits = commits_by_type.get(kind, [])
|
1108 |
+
commit_count = commit_counts_by_type.get(kind, 0)
|
1109 |
+
|
1110 |
+
# Create styled card header
|
1111 |
+
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid {color};">'
|
1112 |
+
f'<h3 style="color: {color}; text-align: center;">{emoji} {label}</h3>'
|
1113 |
+
f'<div style="display: flex; justify-content: space-between; margin: 15px 0;">'
|
1114 |
+
f'<span style="font-weight: bold;">Total:</span><span>{total}</span></div>'
|
1115 |
+
f'<div style="display: flex; justify-content: space-between; margin-bottom: 15px;">'
|
1116 |
+
f'<span style="font-weight: bold;">Commits:</span><span>{commit_count}</span></div>'
|
1117 |
+
f'</div>', unsafe_allow_html=True)
|
1118 |
+
|
1119 |
+
# Create calendar for this type
|
1120 |
+
df_kind = pd.DataFrame(commits, columns=["date"])
|
1121 |
+
if not df_kind.empty:
|
1122 |
+
df_kind = df_kind.drop_duplicates() # Remove any duplicate dates
|
1123 |
+
make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
|
1124 |
+
else:
|
1125 |
+
st.info(f"No {label.lower()} activity in {selected_year}")
|
1126 |
+
|
1127 |
+
except Exception as e:
|
1128 |
+
st.warning(f"Error processing {kind.capitalize()}s: {str(e)}")
|
1129 |
+
# Show empty placeholder
|
1130 |
+
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid #9E9E9E; text-align: center;">'
|
1131 |
+
f'<h3 style="color: #9E9E9E;">β οΈ Error</h3>'
|
1132 |
+
f'<p>Could not load {kind.capitalize()}s data</p>'
|
1133 |
+
f'</div>', unsafe_allow_html=True)
|
1134 |
+
|
1135 |
+
# Footer
|
1136 |
+
st.markdown('<hr style="margin: 3rem 0 1rem 0;">', unsafe_allow_html=True)
|
1137 |
+
st.markdown('<p style="text-align: center; color: #9E9E9E; font-size: 0.8rem;">Hugging Face Contributions Dashboard | Data fetched from Hugging Face API</p>', unsafe_allow_html=True)
|
1138 |
else:
|
1139 |
+
# If no username is selected, show welcome screen
|
1140 |
+
st.markdown(f'<div style="text-align: center; margin: 50px 0;">'
|
1141 |
+
f'<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="width: 200px; margin-bottom: 30px;">'
|
1142 |
+
f'<h2>Welcome to Hugging Face Contributions Dashboard</h2>'
|
1143 |
+
f'<p style="font-size: 1.2rem;">Please select a contributor from the sidebar to view their activity.</p>'
|
1144 |
+
f'</div>', unsafe_allow_html=True)
|