Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import outlines | |
import transformers | |
import torch | |
from threading import Thread | |
pipe = transformers.pipeline("text-generation", "HuggingFaceTB/SmolLM-1.7B-Instruct", torch_dtype=torch.float32) | |
outlines_tokenizer = outlines.models.TransformerTokenizer(pipe.tokenizer) | |
def string_to_acrostic_grammar(s, dash_initial=True): | |
# this will convert a string to a CFG grammar | |
chars = filter(str.isalpha, s.upper()) | |
grammar_rules = [('"- " ' if dash_initial else '') + f'"{char}" /[^-\\r\\n]+/ "\\n"' for char in chars] | |
return "?start: " + " ".join(grammar_rules) | |
def is_this_prompt_a_list(prompt): | |
# this will check if the prompt is a list | |
# ask the model if the prompt is a list, by constraining the generation to yes or no about a question whether the prompt is a list | |
question = f'You are trying to understand the desired format of output for a prompt, whether it will be a list or a story. The prompt:\n```{prompt}```\n\nIs this prompt asking for short phrases in a list, or long sentences in a story?' | |
grammar = '?start: ("list" | "story")' | |
cfg_logits_processor = outlines.processors.CFGLogitsProcessor(grammar, outlines_tokenizer) | |
output = pipe([{"role": "user", "content": question}, {"role": "assistant", "content": "The output to this prompt is a "}], logits_processor=transformers.LogitsProcessorList([cfg_logits_processor]), max_new_tokens=10,) | |
response = output[0]['generated_text'][-1]['content'].split()[-1] | |
# the last word is the answer | |
print("is this prompt a list?", response) | |
return response == "list" | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
acrostic, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
print({"message": message, "history": history, "system_message": system_message, "acrostic": acrostic, "max_tokens": max_tokens, "temperature": temperature, "top_p": top_p}) | |
# this will generate a response to the message | |
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" | |
grammar = string_to_acrostic_grammar(acrostic, dash_initial=is_this_prompt_a_list(prompt)) | |
acrostic_logits_processor = outlines.processors.CFGLogitsProcessor(grammar, outlines_tokenizer) | |
streamer = transformers.TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, decode_kwargs={"skip_special_tokens": True}) | |
current_inputs = [] | |
# take the current inputs, and for every item in the history (which is a list of [x,y], add it to the current inputs like so: {"role": "user", "content": x), {"role": "assistant", "content": y} | |
for x, y in history: | |
current_inputs.append({"role": "user", "content": x}) | |
current_inputs.append({"role": "assistant", "content": y}) | |
# add the current inputs to the inputs | |
inputs = current_inputs + [{"role": "user", "content": prompt}] | |
generation_kwargs = dict(text_inputs=inputs, logits_processor=transformers.LogitsProcessorList([acrostic_logits_processor]), streamer=streamer, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True) | |
thread = Thread(target=pipe, kwargs=generation_kwargs) | |
thread.start() | |
# this will generate a response to the message | |
# TODO: figure out why skip special tokens doesn't skip special tokens | |
special_tokens = set([str(v) for v in pipe.tokenizer.special_tokens_map.values()]) | |
response = "" | |
for new_text in streamer: | |
if new_text not in special_tokens: | |
response += new_text | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Textbox(value="I love you", label="acrostic"), | |
gr.Slider(minimum=1, maximum=8192, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.2, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |