File size: 12,930 Bytes
1ea89dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from collections import defaultdict
from functools import partial

import torch
import torch.nn.functional as F
import torchvision.transforms.v2.functional as TF
from PIL import Image

from unik3d.utils.chamfer_distance import ChamferDistance
from unik3d.utils.constants import DEPTH_BINS

chamfer_cls = ChamferDistance()


def kl_div(gt, pred, eps: float = 1e-6):
    depth_bins = DEPTH_BINS.to(gt.device)
    gt, pred = torch.bucketize(
        gt, boundaries=depth_bins, out_int32=True
    ), torch.bucketize(pred, boundaries=depth_bins, out_int32=True)
    gt = torch.bincount(gt, minlength=len(depth_bins) + 1)
    pred = torch.bincount(pred, minlength=len(depth_bins) + 1)
    gt = gt / gt.sum()
    pred = pred / pred.sum()
    return torch.sum(gt * (torch.log(gt + eps) - torch.log(pred + eps)))


def chamfer_dist(tensor1, tensor2):
    x_lengths = torch.tensor((tensor1.shape[1],), device=tensor1.device)
    y_lengths = torch.tensor((tensor2.shape[1],), device=tensor2.device)
    dist1, dist2, idx1, idx2 = chamfer_cls(
        tensor1, tensor2, x_lengths=x_lengths, y_lengths=y_lengths
    )
    return (torch.sqrt(dist1) + torch.sqrt(dist2)) / 2


def auc(tensor1, tensor2, thresholds):
    x_lengths = torch.tensor((tensor1.shape[1],), device=tensor1.device)
    y_lengths = torch.tensor((tensor2.shape[1],), device=tensor2.device)
    dist1, dist2, idx1, idx2 = chamfer_cls(
        tensor1, tensor2, x_lengths=x_lengths, y_lengths=y_lengths
    )
    # compute precision recall
    precisions = [(dist1 < threshold).sum() / dist1.numel() for threshold in thresholds]
    recalls = [(dist2 < threshold).sum() / dist2.numel() for threshold in thresholds]
    auc_value = torch.trapz(
        torch.tensor(precisions, device=tensor1.device),
        torch.tensor(recalls, device=tensor1.device),
    )
    return auc_value


def delta(tensor1, tensor2, exponent):
    inlier = torch.maximum((tensor1 / tensor2), (tensor2 / tensor1))
    return (inlier < 1.25**exponent).to(torch.float32).mean()


def rho(tensor1, tensor2):
    min_deg = 0.5
    tensor1_norm = tensor1 / torch.norm(tensor1, dim=-1, p=2, keepdim=True).clip(
        min=1e-6
    )
    tensor2_norm = tensor2 / torch.norm(tensor2, dim=-1, p=2, keepdim=True).clip(
        min=1e-6
    )
    max_polar_angle = torch.arccos(tensor1_norm[..., 2]).max() * 180.0 / torch.pi

    if max_polar_angle < 100.0:
        threshold = 15.0
    elif max_polar_angle < 190.0:
        threshold = 20.0
    else:
        threshold = 30.0

    acos_clip = 1 - 1e-6
    # inner prod of norm vector -> cosine
    angular_error = (
        torch.arccos(
            (tensor1_norm * tensor2_norm)
            .sum(dim=-1)
            .clip(min=-acos_clip, max=acos_clip)
        )
        * 180.0
        / torch.pi
    )
    thresholds = torch.linspace(min_deg, threshold, steps=100, device=tensor1.device)
    y_values = [
        (angular_error.abs() <= th).to(torch.float32).mean() for th in thresholds
    ]
    auc_value = torch.trapz(
        torch.tensor(y_values, device=tensor1.device), thresholds
    ) / (threshold - min_deg)
    return auc_value


def tau(tensor1, tensor2, perc):
    inlier = torch.maximum((tensor1 / tensor2), (tensor2 / tensor1))
    return (inlier < (1.0 + perc)).to(torch.float32).mean()


@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
def ssi(tensor1, tensor2, qtl=0.05):
    stability_mat = 1e-9 * torch.eye(2, device=tensor1.device)
    error = (tensor1 - tensor2).abs()
    mask = error < torch.quantile(error, 1 - qtl)
    tensor1_mask = tensor1.to(torch.float32)[mask]
    tensor2_mask = tensor2.to(torch.float32)[mask]
    stability_mat = 1e-4 * torch.eye(2, device=tensor1.device)
    tensor2_one = torch.stack([tensor2_mask, torch.ones_like(tensor2_mask)], dim=1)
    A = torch.matmul(tensor2_one.T, tensor2_one) + stability_mat
    det_A = A[0, 0] * A[1, 1] - A[0, 1] * A[1, 0]
    A_inv = (1.0 / det_A) * torch.tensor(
        [[A[1, 1], -A[0, 1]], [-A[1, 0], A[0, 0]]], device=tensor1.device
    )
    b = tensor2_one.T @ tensor1_mask.unsqueeze(1)
    scale_shift = A_inv @ b
    scale, shift = scale_shift.squeeze().chunk(2, dim=0)
    return tensor2 * scale + shift


def si(tensor1, tensor2):
    return tensor2 * torch.median(tensor1) / torch.median(tensor2)


def arel(tensor1, tensor2):
    tensor2 = tensor2 * torch.median(tensor1) / torch.median(tensor2)
    return (torch.abs(tensor1 - tensor2) / tensor1).mean()


def d_auc(tensor1, tensor2):
    exponents = torch.linspace(0.01, 5.0, steps=100, device=tensor1.device)
    deltas = [delta(tensor1, tensor2, exponent) for exponent in exponents]
    return torch.trapz(torch.tensor(deltas, device=tensor1.device), exponents) / 5.0


def f1_score(tensor1, tensor2, thresholds):
    x_lengths = torch.tensor((tensor1.shape[1],), device=tensor1.device)
    y_lengths = torch.tensor((tensor2.shape[1],), device=tensor2.device)
    dist1, dist2, idx1, idx2 = chamfer_cls(
        tensor1, tensor2, x_lengths=x_lengths, y_lengths=y_lengths
    )
    # compute precision recall
    precisions = [(dist1 < threshold).sum() / dist1.numel() for threshold in thresholds]
    recalls = [(dist2 < threshold).sum() / dist2.numel() for threshold in thresholds]
    precisions = torch.tensor(precisions, device=tensor1.device)
    recalls = torch.tensor(recalls, device=tensor1.device)
    f1_thresholds = 2 * precisions * recalls / (precisions + recalls)
    f1_thresholds = torch.where(
        torch.isnan(f1_thresholds), torch.zeros_like(f1_thresholds), f1_thresholds
    )
    f1_value = torch.trapz(f1_thresholds) / len(thresholds)
    return f1_value


def f1_score_si(tensor1, tensor2, thresholds):
    tensor2 = (
        tensor2
        * torch.median(tensor1.norm(dim=-1))
        / torch.median(tensor2.norm(dim=-1))
    )
    f1_value = f1_score(tensor1, tensor2, thresholds)
    return f1_value


DICT_METRICS = {
    "d1": partial(delta, exponent=1.0),
    "d2": partial(delta, exponent=2.0),
    "d3": partial(delta, exponent=3.0),
    "rmse": lambda gt, pred: torch.sqrt(((gt - pred) ** 2).mean()),
    "rmselog": lambda gt, pred: torch.sqrt(
        ((torch.log(gt) - torch.log(pred)) ** 2).mean()
    ),
    "arel": lambda gt, pred: (torch.abs(gt - pred) / gt).mean(),
    "sqrel": lambda gt, pred: (((gt - pred) ** 2) / gt).mean(),
    "log10": lambda gt, pred: torch.abs(torch.log10(pred) - torch.log10(gt)).mean(),
    "silog": lambda gt, pred: 100 * torch.std(torch.log(pred) - torch.log(gt)).mean(),
    "medianlog": lambda gt, pred: 100
    * (torch.log(pred) - torch.log(gt)).median().abs(),
    "d_auc": d_auc,
    "tau": partial(tau, perc=0.03),
}


DICT_METRICS_3D = {
    "MSE_3d": lambda gt, pred, thresholds: torch.norm(gt - pred, dim=0, p=2),
    "arel_3d": lambda gt, pred, thresholds: torch.norm(gt - pred, dim=0, p=2)
    / torch.norm(gt, dim=0, p=2),
    "tau_3d": lambda gt, pred, thresholds: (
        (torch.norm(pred, dim=0, p=2) / torch.norm(gt, dim=0, p=2)).log().abs().exp()
        < 1.25
    )
    .float()
    .mean(),
    "chamfer": lambda gt, pred, thresholds: chamfer_dist(
        gt.unsqueeze(0).permute(0, 2, 1), pred.unsqueeze(0).permute(0, 2, 1)
    ),
    "F1": lambda gt, pred, thresholds: f1_score(
        gt.unsqueeze(0).permute(0, 2, 1),
        pred.unsqueeze(0).permute(0, 2, 1),
        thresholds=thresholds,
    ),
    "F1_si": lambda gt, pred, thresholds: f1_score_si(
        gt.unsqueeze(0).permute(0, 2, 1),
        pred.unsqueeze(0).permute(0, 2, 1),
        thresholds=thresholds,
    ),
    "rays": lambda gt, pred, thresholds: rho(
        gt.unsqueeze(0).permute(0, 2, 1), pred.unsqueeze(0).permute(0, 2, 1)
    ),
}


DICT_METRICS_FLOW = {
    "epe": lambda gt, pred: torch.sqrt(torch.square(gt - pred).sum(dim=0)),
    "epe1": lambda gt, pred: torch.sqrt(torch.square(gt - pred).sum(dim=0)) < 1,
    "epe3": lambda gt, pred: torch.sqrt(torch.square(gt - pred).sum(dim=0)) < 3,
    "epe5": lambda gt, pred: torch.sqrt(torch.square(gt - pred).sum(dim=0)) < 5,
}


DICT_METRICS_D = {
    "a1": lambda gt, pred: (torch.maximum((gt / pred), (pred / gt)) > 1.25**1.0).to(
        torch.float32
    ),
    "abs_rel": lambda gt, pred: (torch.abs(gt - pred) / gt),
}


def eval_depth(
    gts: torch.Tensor, preds: torch.Tensor, masks: torch.Tensor, max_depth=None
):
    summary_metrics = defaultdict(list)
    # preds = F.interpolate(preds, gts.shape[-2:], mode="bilinear")
    for i, (gt, pred, mask) in enumerate(zip(gts, preds, masks)):
        if max_depth is not None:
            mask = mask & (gt <= max_depth)
        for name, fn in DICT_METRICS.items():
            if name in ["tau", "d1", "arel"]:
                for rescale_fn in ["ssi", "si"]:
                    summary_metrics[f"{name}_{rescale_fn}"].append(
                        fn(gt[mask], eval(rescale_fn)(gt[mask], pred[mask]))
                    )
            summary_metrics[name].append(fn(gt[mask], pred[mask]).mean())
    return {name: torch.stack(vals, dim=0) for name, vals in summary_metrics.items()}


def eval_3d(
    gts: torch.Tensor, preds: torch.Tensor, masks: torch.Tensor, thresholds=None
):
    summary_metrics = defaultdict(list)
    MAX_PIXELS = 75_000  # 300_000
    ratio = min(1.0, (MAX_PIXELS / masks[0].sum()) ** 0.5)
    h_max, w_max = int(gts.shape[-2] * ratio), int(gts.shape[-1] * ratio)
    gts = F.interpolate(gts, size=(h_max, w_max), mode="nearest-exact")
    preds = F.interpolate(preds, size=(h_max, w_max), mode="nearest-exact")
    masks = F.interpolate(
        masks.float(), size=(h_max, w_max), mode="nearest-exact"
    ).bool()

    for i, (gt, pred, mask) in enumerate(zip(gts, preds, masks)):
        if not torch.any(mask):
            continue
        for name, fn in DICT_METRICS_3D.items():
            summary_metrics[name].append(
                fn(gt[:, mask.squeeze()], pred[:, mask.squeeze()], thresholds).mean()
            )
    return {name: torch.stack(vals, dim=0) for name, vals in summary_metrics.items()}


def compute_aucs(gt, pred, mask, uncertainties, steps=50, metrics=["abs_rel"]):
    dict_ = {}
    x_axis = torch.linspace(0, 1, steps=steps + 1, device=gt.device)
    quantiles = torch.linspace(0, 1 - 1 / steps, steps=steps, device=gt.device)
    zer = torch.tensor(0.0, device=gt.device)
    # revert order (high uncertainty first)
    uncertainties = -uncertainties[mask]
    gt = gt[mask]
    pred = pred[mask]
    true_uncert = {metric: -DICT_METRICS_D[metric](gt, pred) for metric in metrics}
    # get percentiles for sampling and corresponding subsets
    thresholds = torch.quantile(uncertainties, quantiles)
    subs = [(uncertainties >= t) for t in thresholds]

    # compute sparsification curves for each metric (add 0 for final sampling)
    for metric in metrics:
        opt_thresholds = torch.quantile(true_uncert[metric], quantiles)
        opt_subs = [(true_uncert[metric] >= t) for t in opt_thresholds]
        sparse_curve = torch.stack(
            [DICT_METRICS[metric](gt[sub], pred[sub]) for sub in subs] + [zer], dim=0
        )
        opt_curve = torch.stack(
            [DICT_METRICS[metric](gt[sub], pred[sub]) for sub in opt_subs] + [zer],
            dim=0,
        )
        rnd_curve = DICT_METRICS[metric](gt, pred)

        dict_[f"AUSE_{metric}"] = torch.trapz(sparse_curve - opt_curve, x=x_axis)
        dict_[f"AURG_{metric}"] = rnd_curve - torch.trapz(sparse_curve, x=x_axis)

    return dict_


def eval_depth_uncertainties(
    gts: torch.Tensor,
    preds: torch.Tensor,
    uncertainties: torch.Tensor,
    masks: torch.Tensor,
    max_depth=None,
):
    summary_metrics = defaultdict(list)
    preds = F.interpolate(preds, gts.shape[-2:], mode="bilinear")
    for i, (gt, pred, mask, uncertainty) in enumerate(
        zip(gts, preds, masks, uncertainties)
    ):
        if max_depth is not None:
            mask = torch.logical_and(mask, gt < max_depth)
        for name, fn in DICT_METRICS.items():
            summary_metrics[name].append(fn(gt[mask], pred[mask]))
        for name, val in compute_aucs(gt, pred, mask, uncertainty).items():
            summary_metrics[name].append(val)
    return {name: torch.stack(vals, dim=0) for name, vals in summary_metrics.items()}


def lazy_eval_depth(
    gt_fns, pred_fns, min_depth=1e-2, max_depth=None, depth_scale=256.0
):
    summary_metrics = defaultdict(list)
    for i, (gt_fn, pred_fn) in enumerate(zip(gt_fns, pred_fns)):
        gt = TF.pil_to_tensor(Image.open(gt_fn)).to(torch.float32) / depth_scale
        pred = TF.pil_to_tensor(Image.open(pred_fn)).to(torch.float32) / depth_scale
        mask = gt > min_depth
        if max_depth is not None:
            mask_2 = gt < max_depth
            mask = torch.logical_and(mask, mask_2)
        for name, fn in DICT_METRICS.items():
            summary_metrics[name].append(fn(gt[mask], pred[mask]))

    return {name: torch.mean(vals).item() for name, vals in summary_metrics.items()}