lozanopastor commited on
Commit
9ef5861
·
verified ·
1 Parent(s): 60ae0f7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  from PyPDF2 import PdfReader
3
  from langchain.text_splitter import RecursiveCharacterTextSplitter
4
  import os
5
- from langchain_community.embeddings import HuggingFaceEmbeddings # Using Hugging Face embeddings
6
  from langchain.vectorstores import FAISS
7
  from langchain_groq import ChatGroq
8
  from langchain.chains.question_answering import load_qa_chain
@@ -31,7 +31,7 @@ def get_text_chunks(text):
31
 
32
  def get_vector_store(text_chunks):
33
  """Creates and saves a FAISS vector store from text chunks."""
34
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Using Hugging Face embeddings
35
  vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
36
  vector_store.save_local("faiss_index")
37
 
@@ -52,22 +52,21 @@ def get_conversational_chain():
52
 
53
  model = ChatGroq(
54
  temperature=0.3,
55
- model_name="deepseek-r1-distill-llama-70b", # Using Mixtral model through Groq
56
  groq_api_key=os.getenv("GROQ_API_KEY")
57
  )
58
  prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
59
  chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
60
  return chain
61
-
62
  def eliminar_texto_entre_tags(texto):
63
  patron = r'<think>.*?</think>'
64
- texto_limpio = re.sub(patron, '', texto)
65
  return texto_limpio
66
 
67
-
68
  def user_input(user_question):
69
  """Handles user queries by retrieving answers from the vector store."""
70
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Using Hugging Face embeddings
71
 
72
  new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
73
  docs = new_db.similarity_search(user_question)
@@ -109,7 +108,8 @@ def main():
109
 
110
  st.sidebar.header("Upload & Process PDF Files")
111
  st.sidebar.markdown(
112
- "Using DeepSeek R1 model for advanced conversational capabilities.")
 
113
 
114
  with st.sidebar:
115
  pdf_docs = st.file_uploader(
 
2
  from PyPDF2 import PdfReader
3
  from langchain.text_splitter import RecursiveCharacterTextSplitter
4
  import os
5
+ from langchain_community.embeddings import HuggingFaceEmbeddings
6
  from langchain.vectorstores import FAISS
7
  from langchain_groq import ChatGroq
8
  from langchain.chains.question_answering import load_qa_chain
 
31
 
32
  def get_vector_store(text_chunks):
33
  """Creates and saves a FAISS vector store from text chunks."""
34
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
35
  vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
36
  vector_store.save_local("faiss_index")
37
 
 
52
 
53
  model = ChatGroq(
54
  temperature=0.3,
55
+ model_name="deepseek-r1-distill-llama-70b",
56
  groq_api_key=os.getenv("GROQ_API_KEY")
57
  )
58
  prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
59
  chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
60
  return chain
61
+
62
  def eliminar_texto_entre_tags(texto):
63
  patron = r'<think>.*?</think>'
64
+ texto_limpio = re.sub(patron, '', texto, flags=re.DOTALL)
65
  return texto_limpio
66
 
 
67
  def user_input(user_question):
68
  """Handles user queries by retrieving answers from the vector store."""
69
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
70
 
71
  new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
72
  docs = new_db.similarity_search(user_question)
 
108
 
109
  st.sidebar.header("Upload & Process PDF Files")
110
  st.sidebar.markdown(
111
+ "Using DeepSeek R1 model for advanced conversational capabilities."
112
+ )
113
 
114
  with st.sidebar:
115
  pdf_docs = st.file_uploader(