Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,198 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
|
5 |
-
|
6 |
-
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
else:
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
-
css = """
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
-
}
|
65 |
-
"""
|
66 |
|
67 |
-
with gr.Blocks(css=css) as demo:
|
68 |
-
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
|
80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
negative_prompt = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
with gr.Row():
|
103 |
-
width = gr.Slider(
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
-
|
111 |
-
height = gr.Slider(
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
-
num_inference_steps = gr.Slider(
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
-
)
|
135 |
-
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
-
)
|
152 |
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
|
5 |
+
import gradio as gr
|
6 |
+
import requests
|
7 |
import torch
|
8 |
+
import torchvision
|
9 |
+
import torchvision.transforms as T
|
10 |
+
from PIL import Image
|
11 |
+
from featup.util import norm
|
12 |
+
from torchaudio.functional import resample
|
13 |
+
|
14 |
+
from denseav.train import LitAVAligner
|
15 |
+
from denseav.plotting import plot_attention_video, plot_2head_attention_video, plot_feature_video
|
16 |
+
from denseav.shared import norm, crop_to_divisor, blur_dim
|
17 |
+
from os.path import join
|
18 |
|
|
|
|
|
19 |
|
20 |
+
mode = "hf"
|
21 |
+
|
22 |
+
if mode == "local":
|
23 |
+
sample_videos_dir = "samples"
|
24 |
else:
|
25 |
+
os.environ['TORCH_HOME'] = '/tmp/.cache'
|
26 |
+
os.environ['HF_HOME'] = '/tmp/.cache'
|
27 |
+
os.environ['HF_DATASETS_CACHE'] = '/tmp/.cache'
|
28 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/.cache'
|
29 |
+
os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache'
|
30 |
+
sample_videos_dir = "/tmp/samples"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
|
|
32 |
|
33 |
+
def download_video(url, save_path):
|
34 |
+
response = requests.get(url)
|
35 |
+
with open(save_path, 'wb') as file:
|
36 |
+
file.write(response.content)
|
|
|
|
|
|
|
|
|
37 |
|
|
|
38 |
|
39 |
+
base_url = "https://marhamilresearch4.blob.core.windows.net/denseav-public/samples/"
|
40 |
+
sample_videos_urls = {
|
41 |
+
"puppies.mp4": base_url + "puppies.mp4",
|
42 |
+
"peppers.mp4": base_url + "peppers.mp4",
|
43 |
+
"boat.mp4": base_url + "boat.mp4",
|
44 |
+
"elephant2.mp4": base_url + "elephant2.mp4",
|
45 |
+
|
46 |
+
}
|
47 |
+
|
48 |
+
# Ensure the directory for sample videos exists
|
49 |
+
os.makedirs(sample_videos_dir, exist_ok=True)
|
50 |
+
|
51 |
+
# Download each sample video
|
52 |
+
for filename, url in sample_videos_urls.items():
|
53 |
+
save_path = os.path.join(sample_videos_dir, filename)
|
54 |
+
# Download the video if it doesn't already exist
|
55 |
+
if not os.path.exists(save_path):
|
56 |
+
print(f"Downloading {filename}...")
|
57 |
+
download_video(url, save_path)
|
58 |
+
else:
|
59 |
+
print(f"{filename} already exists. Skipping download.")
|
60 |
+
|
61 |
+
csv.field_size_limit(100000000)
|
62 |
+
options = ['language', "sound-language", "sound"]
|
63 |
+
load_size = 224
|
64 |
+
plot_size = 224
|
65 |
+
|
66 |
+
video_input = gr.Video(label="Choose a video to featurize", height=480)
|
67 |
+
model_option = gr.Radio(options, value="language", label='Choose a model')
|
68 |
+
|
69 |
+
video_output1 = gr.Video(label="Audio Video Attention", height=480)
|
70 |
+
video_output2 = gr.Video(label="Multi-Head Audio Video Attention (Only Availible for sound_and_language)",
|
71 |
+
height=480)
|
72 |
+
video_output3 = gr.Video(label="Visual Features", height=480)
|
73 |
+
|
74 |
+
models = {o: LitAVAligner.from_pretrained(f"mhamilton723/DenseAV-{o}") for o in options}
|
75 |
+
|
76 |
+
|
77 |
+
def process_video(video, model_option):
|
78 |
+
# model = models[model_option].cuda()
|
79 |
+
model = models[model_option]
|
80 |
+
|
81 |
+
original_frames, audio, info = torchvision.io.read_video(video, end_pts=10, pts_unit='sec')
|
82 |
+
sample_rate = 16000
|
83 |
+
|
84 |
+
if info["audio_fps"] != sample_rate:
|
85 |
+
audio = resample(audio, info["audio_fps"], sample_rate)
|
86 |
+
audio = audio[0].unsqueeze(0)
|
87 |
+
|
88 |
+
img_transform = T.Compose([
|
89 |
+
T.Resize(load_size, Image.BILINEAR),
|
90 |
+
lambda x: crop_to_divisor(x, 8),
|
91 |
+
lambda x: x.to(torch.float32) / 255,
|
92 |
+
norm])
|
93 |
+
|
94 |
+
frames = torch.cat([img_transform(f.permute(2, 0, 1)).unsqueeze(0) for f in original_frames], axis=0)
|
95 |
+
|
96 |
+
plotting_img_transform = T.Compose([
|
97 |
+
T.Resize(plot_size, Image.BILINEAR),
|
98 |
+
lambda x: crop_to_divisor(x, 8),
|
99 |
+
lambda x: x.to(torch.float32) / 255])
|
100 |
+
|
101 |
+
frames_to_plot = plotting_img_transform(original_frames.permute(0, 3, 1, 2))
|
102 |
+
|
103 |
+
with torch.no_grad():
|
104 |
+
# audio_feats = model.forward_audio({"audio": audio.cuda()})
|
105 |
+
audio_feats = model.forward_audio({"audio": audio})
|
106 |
+
audio_feats = {k: v.cpu() for k, v in audio_feats.items()}
|
107 |
+
# image_feats = model.forward_image({"frames": frames.unsqueeze(0).cuda()}, max_batch_size=2)
|
108 |
+
image_feats = model.forward_image({"frames": frames.unsqueeze(0)}, max_batch_size=2)
|
109 |
+
image_feats = {k: v.cpu() for k, v in image_feats.items()}
|
110 |
+
|
111 |
+
sim_by_head = model.sim_agg.get_pairwise_sims(
|
112 |
+
{**image_feats, **audio_feats},
|
113 |
+
raw=False,
|
114 |
+
agg_sim=False,
|
115 |
+
agg_heads=False
|
116 |
+
).mean(dim=-2).cpu()
|
117 |
+
|
118 |
+
sim_by_head = blur_dim(sim_by_head, window=3, dim=-1)
|
119 |
+
print(sim_by_head.shape)
|
120 |
+
|
121 |
+
temp_video_path_1 = tempfile.mktemp(suffix='.mp4')
|
122 |
+
|
123 |
+
plot_attention_video(
|
124 |
+
sim_by_head,
|
125 |
+
frames_to_plot,
|
126 |
+
audio,
|
127 |
+
info["video_fps"],
|
128 |
+
sample_rate,
|
129 |
+
temp_video_path_1)
|
130 |
+
|
131 |
+
if model_option == "sound_and_language":
|
132 |
+
temp_video_path_2 = tempfile.mktemp(suffix='.mp4')
|
133 |
+
|
134 |
+
plot_2head_attention_video(
|
135 |
+
sim_by_head,
|
136 |
+
frames_to_plot,
|
137 |
+
audio,
|
138 |
+
info["video_fps"],
|
139 |
+
sample_rate,
|
140 |
+
temp_video_path_2)
|
141 |
+
|
142 |
+
else:
|
143 |
+
temp_video_path_2 = None
|
144 |
+
|
145 |
+
temp_video_path_3 = tempfile.mktemp(suffix='.mp4')
|
146 |
+
temp_video_path_4 = tempfile.mktemp(suffix='.mp4')
|
147 |
+
|
148 |
+
plot_feature_video(
|
149 |
+
image_feats["image_feats"].cpu(),
|
150 |
+
audio_feats['audio_feats'].cpu(),
|
151 |
+
frames_to_plot,
|
152 |
+
audio,
|
153 |
+
info["video_fps"],
|
154 |
+
sample_rate,
|
155 |
+
temp_video_path_3,
|
156 |
+
temp_video_path_4,
|
157 |
+
)
|
158 |
+
# return temp_video_path_1, temp_video_path_2, temp_video_path_3, temp_video_path_4
|
159 |
+
|
160 |
+
return temp_video_path_1, temp_video_path_2, temp_video_path_3
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
with gr.Blocks() as demo:
|
164 |
+
with gr.Column():
|
165 |
+
gr.Markdown("## Visualizing Sound and Language with DenseAV")
|
166 |
+
gr.Markdown(
|
167 |
+
"This demo allows you to explore the inner attention maps of DenseAV's dense multi-head contrastive operator.")
|
168 |
+
with gr.Row():
|
169 |
+
with gr.Column(scale=1):
|
170 |
+
model_option.render()
|
171 |
+
with gr.Column(scale=3):
|
172 |
+
video_input.render()
|
173 |
+
with gr.Row():
|
174 |
+
submit_button = gr.Button("Submit")
|
175 |
+
with gr.Row():
|
176 |
+
gr.Examples(
|
177 |
+
examples=[
|
178 |
+
[join(sample_videos_dir, "puppies.mp4"), "sound_and_language"],
|
179 |
+
[join(sample_videos_dir, "peppers.mp4"), "language"],
|
180 |
+
[join(sample_videos_dir, "elephant2.mp4"), "language"],
|
181 |
+
[join(sample_videos_dir, "boat.mp4"), "language"]
|
182 |
+
|
183 |
+
],
|
184 |
+
inputs=[video_input, model_option]
|
185 |
)
|
186 |
+
with gr.Row():
|
187 |
+
video_output1.render()
|
188 |
+
video_output2.render()
|
189 |
+
video_output3.render()
|
190 |
|
191 |
+
submit_button.click(fn=process_video, inputs=[video_input, model_option],
|
192 |
+
outputs=[video_output1, video_output2, video_output3])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
+
|
195 |
+
if mode == "local":
|
196 |
+
demo.launch(server_name="0.0.0.0", server_port=6006, debug=True)
|
197 |
+
else:
|
198 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|