Spaces:
Running
Running
File size: 8,844 Bytes
3d9aa0c a14aaa7 3d9aa0c 32f1889 05f784a 3d9aa0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
from collections import defaultdict
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import numpy as np
import scipy.io.wavfile as wavfile
import torch
import torch.nn.functional as F
import torchvision
from moviepy import *
# from moviepy.editor import VideoFileClip, AudioFileClip
from base64 import b64encode
from DenseAV.denseav.shared import pca
def write_video_with_audio(video_frames, audio_array, video_fps, audio_fps, output_path):
"""
Writes video frames and audio to a specified path.
Parameters:
- video_frames: torch.Tensor of shape (num_frames, height, width, channels)
- audio_array: torch.Tensor of shape (num_samples, num_channels)
- video_fps: int, frames per second of the video
- audio_fps: int, sample rate of the audio
- output_path: str, path to save the final video with audio
"""
os.makedirs(os.path.dirname(output_path), exist_ok=True)
temp_video_path = output_path.replace('.mp4', '_temp.mp4')
temp_audio_path = output_path.replace('.mp4', '_temp_audio.wav')
video_options = {
'crf': '23',
'preset': 'slow',
'bit_rate': '1000k'}
if audio_array is not None:
torchvision.io.write_video(
filename=temp_video_path,
video_array=video_frames,
fps=video_fps,
options=video_options
)
wavfile.write(temp_audio_path, audio_fps, audio_array.cpu().to(torch.float64).permute(1, 0).numpy())
video_clip = VideoFileClip(temp_video_path)
audio_clip = AudioFileClip(temp_audio_path)
final_clip = video_clip.with_audio(audio_clip)
final_clip.write_videofile(output_path, codec='libx264')
os.remove(temp_video_path)
os.remove(temp_audio_path)
else:
torchvision.io.write_video(
filename=output_path,
video_array=video_frames,
fps=video_fps,
options=video_options
)
def alpha_blend_layers(layers):
blended_image = layers[0]
for layer in layers[1:]:
rgb1, alpha1 = blended_image[:, :3, :, :], blended_image[:, 3:4, :, :]
rgb2, alpha2 = layer[:, :3, :, :], layer[:, 3:4, :, :]
alpha_out = alpha2 + alpha1 * (1 - alpha2)
rgb_out = (rgb2 * alpha2 + rgb1 * alpha1 * (1 - alpha2)) / alpha_out.clamp(min=1e-7)
blended_image = torch.cat([rgb_out, alpha_out], dim=1)
return (blended_image[:, :3] * 255).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1)
def _prep_sims_for_plotting(sim_by_head, frames):
with torch.no_grad():
results = defaultdict(list)
n_frames, _, vh, vw = frames.shape
sims = sim_by_head.max(dim=1).values
n_audio_feats = sims.shape[-1]
for frame_num in range(n_frames):
selected_audio_feat = int((frame_num / n_frames) * n_audio_feats)
selected_sim = F.interpolate(
sims[frame_num, :, :, selected_audio_feat].unsqueeze(0).unsqueeze(0),
size=(vh, vw),
mode="bicubic")
results["sims_all"].append(selected_sim)
for head in range(sim_by_head.shape[1]):
selected_sim = F.interpolate(
sim_by_head[frame_num, head, :, :, selected_audio_feat].unsqueeze(0).unsqueeze(0),
size=(vh, vw),
mode="bicubic")
results[f"sims_{head + 1}"].append(selected_sim)
results = {k: torch.cat(v, dim=0) for k, v in results.items()}
return results
def get_plasma_with_alpha():
plasma = plt.cm.plasma(np.linspace(0, 1, 256))
alphas = np.linspace(0, 1, 256)
plasma_with_alpha = np.zeros((256, 4))
plasma_with_alpha[:, 0:3] = plasma[:, 0:3]
plasma_with_alpha[:, 3] = alphas
return mcolors.ListedColormap(plasma_with_alpha)
def get_inferno_with_alpha_2(alpha=0.5, k=30):
k_fraction = k / 100.0
custom_cmap = np.zeros((256, 4))
threshold_index = int(k_fraction * 256)
custom_cmap[:threshold_index, :3] = 0 # RGB values for black
custom_cmap[:threshold_index, 3] = alpha # Alpha value
remaining_inferno = plt.cm.inferno(np.linspace(0, 1, 256 - threshold_index))
custom_cmap[threshold_index:, :3] = remaining_inferno[:, :3]
custom_cmap[threshold_index:, 3] = alpha # Alpha value
return mcolors.ListedColormap(custom_cmap)
def get_inferno_with_alpha():
plasma = plt.cm.inferno(np.linspace(0, 1, 256))
alphas = np.linspace(0, 1, 256)
plasma_with_alpha = np.zeros((256, 4))
plasma_with_alpha[:, 0:3] = plasma[:, 0:3]
plasma_with_alpha[:, 3] = alphas
return mcolors.ListedColormap(plasma_with_alpha)
red_cmap = mcolors.LinearSegmentedColormap('RedMap', segmentdata={
'red': [(0.0, 1.0, 1.0), (1.0, 1.0, 1.0)],
'green': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)],
'blue': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)],
'alpha': [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0)]
})
blue_cmap = mcolors.LinearSegmentedColormap('BlueMap', segmentdata={
'red': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)],
'green': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)],
'blue': [(0.0, 1.0, 1.0), (1.0, 1.0, 1.0)],
'alpha': [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0)]
})
def plot_attention_video(sims_by_head, frames, audio, video_fps, audio_fps, output_filename):
prepped_sims = _prep_sims_for_plotting(sims_by_head, frames)
n_frames, _, vh, vw = frames.shape
sims_all = prepped_sims["sims_all"].clamp_min(0)
sims_all -= sims_all.min()
sims_all = sims_all / sims_all.max()
cmap = get_inferno_with_alpha()
layer1 = torch.cat([frames, torch.ones(n_frames, 1, vh, vw)], axis=1)
layer2 = torch.tensor(cmap(sims_all.squeeze().detach().cpu())).permute(0, 3, 1, 2)
write_video_with_audio(
alpha_blend_layers([layer1, layer2]),
audio,
video_fps,
audio_fps,
output_filename)
def plot_2head_attention_video(sims_by_head, frames, audio, video_fps, audio_fps, output_filename):
prepped_sims = _prep_sims_for_plotting(sims_by_head, frames)
sims_1 = prepped_sims["sims_1"]
sims_2 = prepped_sims["sims_2"]
n_frames, _, vh, vw = frames.shape
mask = sims_1 > sims_2
sims_1 *= mask
sims_2 *= (~mask)
sims_1 = sims_1.clamp_min(0)
sims_1 -= sims_1.min()
sims_1 = sims_1 / sims_1.max()
sims_2 = sims_2.clamp_min(0)
sims_2 -= sims_2.min()
sims_2 = sims_2 / sims_2.max()
layer1 = torch.cat([frames, torch.ones(n_frames, 1, vh, vw)], axis=1)
layer2_head1 = torch.tensor(red_cmap(sims_1.squeeze().detach().cpu())).permute(0, 3, 1, 2)
layer2_head2 = torch.tensor(blue_cmap(sims_2.squeeze().detach().cpu())).permute(0, 3, 1, 2)
write_video_with_audio(
alpha_blend_layers([layer1, layer2_head1, layer2_head2]),
audio,
video_fps,
audio_fps,
output_filename)
def plot_feature_video(image_feats,
audio_feats,
frames,
audio,
video_fps,
audio_fps,
video_filename,
audio_filename):
with torch.no_grad():
image_feats_ = image_feats.cpu()
audio_feats_ = audio_feats.cpu()
[red_img_feats, red_audio_feats], _ = pca([
image_feats_,
audio_feats_, # .tile(image_feats_.shape[0], 1, 1, 1)
])
_, _, vh, vw = frames.shape
red_img_feats = F.interpolate(red_img_feats, size=(vh, vw), mode="bicubic")
red_audio_feats = red_audio_feats[0].unsqueeze(0)
red_audio_feats = F.interpolate(red_audio_feats, size=(50, red_img_feats.shape[0]), mode="bicubic")
write_video_with_audio(
(red_img_feats.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8),
audio,
video_fps,
audio_fps,
video_filename)
red_audio_feats_expanded = red_audio_feats.tile(red_img_feats.shape[0], 1, 1, 1)
red_audio_feats_expanded = F.interpolate(red_audio_feats_expanded, scale_factor=6, mode="bicubic")
for i in range(red_img_feats.shape[0]):
center_index = i * 6
min_index = max(center_index - 2, 0)
max_index = min(center_index + 2, red_audio_feats_expanded.shape[-1])
red_audio_feats_expanded[i, :, :, min_index:max_index] = 1
write_video_with_audio(
(red_audio_feats_expanded.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8),
audio,
video_fps,
audio_fps,
audio_filename)
def display_video_in_notebook(path):
from IPython.display import HTML, display
mp4 = open(path, 'rb').read()
data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
display(HTML("""
<video width=400 controls>
<source src="%s" type="video/mp4">
</video>
""" % data_url))
|