Spaces:
Runtime error
Runtime error
File size: 1,655 Bytes
d64e1bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import cv2
from deepface import DeepFace
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import tempfile
# VADER for text sentiment
analyzer = SentimentIntensityAnalyzer()
def analyze_text(text):
score = analyzer.polarity_scores(text)
if score['compound'] >= 0.05:
return "Positive π"
elif score['compound'] <= -0.05:
return "Negative π "
else:
return "Neutral π"
def analyze_video(video_file):
if video_file is None:
return "No video uploaded"
# Save uploaded file to temp location
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
with open(temp_path, "wb") as f:
f.write(video_file.read())
cap = cv2.VideoCapture(temp_path)
success, frame = cap.read()
cap.release()
if not success:
return "Couldn't read video"
try:
result = DeepFace.analyze(frame, actions=["emotion"], enforce_detection=False)
return result[0]['dominant_emotion'].capitalize()
except Exception as e:
return f"Error: {str(e)}"
def analyze_post(text, video):
sentiment = analyze_text(text)
emotion = analyze_video(video)
return f"Text Sentiment: {sentiment}\nVideo Emotion: {emotion}"
interface = gr.Interface(
fn=analyze_post,
inputs=[
gr.Textbox(label="Post Text", placeholder="Type your post here..."),
gr.File(label="Upload Video (MP4)", file_types=[".mp4"])
],
outputs="text",
title="π± Emotion & Sentiment Analyzer",
description="Analyze text sentiment + video facial emotion in one post."
)
interface.launch()
|