File size: 6,684 Bytes
0901236 adfdacf 0901236 cb99758 0901236 134f289 0901236 adfdacf 0901236 adfdacf 0901236 adfdacf 0901236 adfdacf 0901236 adfdacf 0901236 4c6fef3 adfdacf 0901236 371e757 adfdacf 0901236 adfdacf 0901236 adfdacf 0901236 adfdacf 0901236 adfdacf 0901236 adfdacf 0901236 adfdacf 0901236 adfdacf 0901236 adfdacf 0901236 adfdacf 0901236 134f289 0901236 134f289 0901236 adfdacf 0901236 adfdacf 0901236 c55e8f8 0901236 134f289 0901236 adfdacf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# app.py
import gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
import numpy as np
import json
import pickle
import nltk
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
import re
import contractions
from huggingface_hub import hf_hub_download
import warnings
from sklearn.exceptions import InconsistentVersionWarning
# Suppress scikit-learn warning
warnings.filterwarnings("ignore", category=InconsistentVersionWarning)
# Download NLTK resources
nltk.download('punkt', quiet=True)
nltk.download('punkt_tab', quiet=True)
nltk.download('wordnet', quiet=True)
nltk.download('omw-1.4', quiet=True)
# Initialize lemmatizer
lemmatizer = WordNetLemmatizer()
# Define LuongAttention (matches training)
class LuongAttention(tf.keras.layers.Layer):
def __init__(self, **kwargs):
super(LuongAttention, self).__init__(**kwargs)
def build(self, input_shape):
self.W = self.add_weight(name='attention_weight',
shape=(input_shape[-1], input_shape[-1]),
initializer='glorot_normal',
trainable=True)
self.b = self.add_weight(name='attention_bias',
shape=(input_shape[-1],),
initializer='zeros',
trainable=True)
super(LuongAttention, self).build(input_shape)
def call(self, inputs):
e = tf.keras.backend.tanh(tf.keras.backend.dot(inputs, self.W) + self.b)
alpha = tf.keras.backend.softmax(e, axis=1)
context = inputs * alpha
context = tf.keras.backend.sum(context, axis=1)
return context
def get_config(self):
config = super(LuongAttention, self).get_config()
return config
# Load model, tokenizer, label encoder from Hugging Face Hub
model_path = hf_hub_download(repo_id="logasanjeev/sentiment-analysis-bilstm-luong", filename="sentiment_model.h5")
tokenizer_path = hf_hub_download(repo_id="logasanjeev/sentiment-analysis-bilstm-luong", filename="tokenizer.pkl")
encoder_path = hf_hub_download(repo_id="logasanjeev/sentiment-analysis-bilstm-luong", filename="label_encoder.pkl")
model = load_model(
model_path,
custom_objects={
"LuongAttention": LuongAttention,
"focal_loss_fn": lambda y_true, y_pred: y_true # Placeholder for custom loss
}
)
with open(tokenizer_path, "rb") as f:
tokenizer = pickle.load(f)
with open(encoder_path, "rb") as f:
label_encoder = pickle.load(f)
# Optimal threshold from training
OPTIMAL_THRESHOLD = 0.5173
# Text cleaning function (matches training)
def clean_text(text):
if not isinstance(text, str):
text = str(text)
# Expand contractions
text = contractions.fix(text)
# Convert to lowercase
text = text.lower()
# Remove URLs
text = re.sub(r'http\S+|www\S+|https\S+', '', text, flags=re.MULTILINE)
# Remove usernames and hashtags
text = re.sub(r'@\w+|#\w+', '', text)
# Remove HTML tags
text = re.sub(r'<.*?>+', '', text)
# Remove newlines
text = re.sub(r'\n', '', text)
# Remove numbers
text = re.sub(r'\w*\d\w*', '', text)
# Remove special characters
text = re.sub(r'[^\w\s]', '', text)
# Remove extra spaces
text = ' '.join(text.split())
# Tokenize and lemmatize
tokens = word_tokenize(text)
tokens = [lemmatizer.lemmatize(token, pos='v') for token in tokens]
return ' '.join(tokens).strip()
# Prediction function
def predict_sentiment(text):
if not text or not isinstance(text, str) or len(text.strip()) < 3:
return "Please enter a valid sentence.", None, None
# Clean and preprocess
cleaned = clean_text(text)
seq = tokenizer.texts_to_sequences([cleaned])
if not seq or not any(x > 1 for x in seq[0]):
return "Text too short or invalid.", None, None
# Pad sequence
max_len = 60
pad = pad_sequences(seq, maxlen=max_len, padding='post', truncating='post')
# Predict
with tf.device('/CPU:0'):
prob = model.predict(pad, verbose=0)[0][0]
# Apply threshold
label_idx = (prob >= OPTIMAL_THRESHOLD).astype(int)
sentiment = label_encoder.inverse_transform([label_idx])[0].lower()
confidence = prob if sentiment == 'positive' else 1 - prob
# Format output
emoji = {"negative": "😣", "positive": "😊"}
probs_dict = {
"Negative": 1 - prob,
"Positive": prob
}
return (
f"**Sentiment**: {sentiment.capitalize()} {emoji[sentiment]}",
probs_dict,
cleaned
)
# Custom CSS for sleek UI
css = """
body { font-family: 'Arial', sans-serif; }
.gradio-container { max-width: 800px; margin: auto; }
h1 { color: #1a73e8; text-align: center; }
.textbox { border-radius: 8px; }
.output-text { font-size: 1.2em; font-weight: bold; }
.footer { text-align: center; color: #666; }
.prob-bar { margin-top: 10px; }
button { border-radius: 6px; }
"""
# Gradio interface
with gr.Blocks(theme="soft", css=css) as demo:
gr.Markdown(
"""
# Sentiment Analysis App
Predict the sentiment of your text (Negative or Positive) using a BiLSTM model with Luong attention. Optimized threshold (0.5173) for 86.58% accuracy. Try it out!
"""
)
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Textbox(
label="Your Text",
placeholder="e.g., I wouldn't recommend it to anyone",
lines=2
)
predict_btn = gr.Button("Analyze Sentiment", variant="primary")
output_text = gr.Markdown()
prob_plot = gr.Label(label="Probability Distribution")
cleaned_text = gr.Textbox(label="Cleaned Text", interactive=False)
examples = gr.Examples(
examples=[
"Not bad at all.",
"Just what I needed today — a flat tire and a rainstorm. Living the dream!",
"The movie was visually stunning, but the story was painfully slow.",
"I wouldn’t recommend it to someone I like.",
"For once, he didn’t mess it up."
],
inputs=text_input
)
# Bind predict function
predict_btn.click(
fn=predict_sentiment,
inputs=text_input,
outputs=[output_text, prob_plot, cleaned_text]
)
gr.Markdown(
"""
<div class='footer'>
Created by logasanjeev | Powered by Hugging Face & Gradio
</div>
"""
)
# Launch app
demo.launch() |