File size: 6,198 Bytes
0901236
 
 
 
 
 
 
 
 
 
 
 
 
 
cb99758
 
 
 
 
0901236
 
 
 
 
 
 
 
 
cb99758
0901236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb99758
0901236
 
 
 
 
 
 
 
 
cb99758
 
0901236
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# app.py
import gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
import numpy as np
import json
import pickle
import nltk
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
import re
import string
from huggingface_hub import hf_hub_download
import warnings
from sklearn.exceptions import InconsistentVersionWarning

# Suppress scikit-learn warning
warnings.filterwarnings("ignore", category=InconsistentVersionWarning)

# Download NLTK resources
nltk.download('punkt', quiet=True)
nltk.download('wordnet', quiet=True)
nltk.download('omw-1.4', quiet=True)

# Initialize lemmatizer
lemmatizer = WordNetLemmatizer()

# Define LuongAttention
class LuongAttention(tf.keras.layers.Layer):
    def __init__(self, **kwargs):
        super(LuongAttention, self).__init__(**kwargs)

    def build(self, input_shape):
        self.W = self.add_weight(
            name='attention_weight',
            shape=(input_shape[-1], input_shape[-1]),
            initializer='glorot_uniform',
            trainable=True
        )
        self.b = self.add_weight(
            name='attention_bias',
            shape=(input_shape[-1],),
            initializer='zeros',
            trainable=True
        )
        super(LuongAttention, self).build(input_shape)

    def call(self, inputs):
        lstm_output = inputs
        score = tf.matmul(lstm_output, self.W) + self.b
        score = tf.tanh(score)
        attention_weights = tf.nn.softmax(score, axis=1)
        context = lstm_output * attention_weights
        context = tf.reduce_sum(context, axis=1)
        return context, attention_weights

    def get_config(self):
        config = super(LuongAttention, self).get_config()
        return config

# Load model, tokenizer, label encoder from Hugging Face Hub
model_path = hf_hub_download(repo_id="logasanjeev/sentiment-analysis-bilstm-luong", filename="sentiment_model.h5")
tokenizer_path = hf_hub_download(repo_id="logasanjeev/sentiment-analysis-bilstm-luong", filename="tokenizer.json")
encoder_path = hf_hub_download(repo_id="logasanjeev/sentiment-analysis-bilstm-luong", filename="label_encoder.pkl")
model = load_model(model_path, custom_objects={"LuongAttention": LuongAttention})
with open(tokenizer_path, "r") as f:
    tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(json.load(f))
with open(encoder_path, "rb") as f:
    label_encoder = pickle.load(f)

# Text cleaning function
def clean_text(text):
    if not isinstance(text, str):
        text = str(text)
    text = text.lower()
    text = re.sub(r'http\S+|www\S+|https\S+', '', text, flags=re.MULTILINE)
    text = re.sub(r'@\w+|\#\w+', '', text)
    text = text.translate(str.maketrans('', '', string.punctuation))
    text = re.sub(r'\d+', '', text)
    tokens = word_tokenize(text)
    tokens = [lemmatizer.lemmatize(token) for token in tokens]
    return ' '.join(tokens).strip()

# Prediction function
def predict_sentiment(text):
    if not text or not isinstance(text, str) or len(text.strip()) < 3:
        return "Please enter a valid sentence.", None, None
    
    # Clean and preprocess
    cleaned = clean_text(text)
    seq = tokenizer.texts_to_sequences([cleaned])
    if not seq or not any(x > 1 for x in seq[0]):
        return "Text too short or invalid.", None, None
    
    # Pad sequence
    max_len = 35
    pad = pad_sequences(seq, maxlen=max_len, padding='post', truncating='post')
    
    # Predict
    with tf.device('/CPU:0'):
        pred = model.predict(pad, verbose=0)[0]
    sentiment = label_encoder.inverse_transform([np.argmax(pred)])[0]
    probs = pred.tolist()
    
    # Format output
    emoji = {"negative": "😣", "neutral": "😐", "positive": "😊"}
    probs_dict = {
        "Negative": probs[0],
        "Neutral": probs[1],
        "Positive": probs[2]
    }
    
    return (
        f"**Sentiment**: {sentiment.capitalize()} {emoji[sentiment]}",
        probs_dict,
        cleaned
    )

# Custom CSS for slick UI
css = """
body { font-family: 'Arial', sans-serif; }
.gradio-container { max-width: 800px; margin: auto; }
h1 { color: #1a73e8; text-align: center; }
.textbox { border-radius: 8px; }
.output-text { font-size: 1.2em; font-weight: bold; }
.footer { text-align: center; color: #666; }
.prob-bar { margin-top: 10px; }
button { border-radius: 6px; }
"""

# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.Markdown(
        """
        # Sentiment Analysis App
        Predict the sentiment of your text (negative, neutral, positive) using a Bi-LSTM model with Luong attention. Try it out!
        """
    )
    
    with gr.Row():
        with gr.Column(scale=3):
            text_input = gr.Textbox(
                label="Your Text",
                placeholder="e.g., The food service is not good at all",
                lines=2
            )
            predict_btn = gr.Button("Analyze Sentiment", variant="primary")
        with gr.Column(scale=1):
            theme_toggle = gr.Button("Toggle Theme")
    
    output_text = gr.Markdown()
    prob_plot = gr.Label(label="Probability Distribution")
    cleaned_text = gr.Textbox(label="Cleaned Text", interactive=False)
    
    examples = gr.Examples(
        examples=[
            "the food service is not good at all",
            "this is not recommended at all",
            "This place sucks!",
            "I’m so happy with this!",
            "It’s alright, I guess."
        ],
        inputs=text_input
    )
    
    # Theme toggle logic
    def toggle_theme():
        return {"theme": gr.themes.Dark()} if demo.theme.name == "soft" else {"theme": gr.themes.Soft()}
    
    # Bind functions
    predict_btn.click(
        fn=predict_sentiment,
        inputs=text_input,
        outputs=[output_text, prob_plot, cleaned_text]
    )
    theme_toggle.click(
        fn=toggle_theme,
        inputs=None,
        outputs=[demo]
    )
    
    gr.Markdown(
        """
        <div class='footer'>
            Created by logasanjeev | Powered by Hugging Face & Gradio
        </div>
        """
    )

# Launch app
demo.launch()