Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import BertForSequenceClassification, BertTokenizer
|
5 |
+
import requests
|
6 |
+
import json
|
7 |
+
|
8 |
+
# Load model and tokenizer from Hugging Face Hub
|
9 |
+
repo_id = "logasanjeev/goemotions-bert"
|
10 |
+
model = BertForSequenceClassification.from_pretrained(repo_id)
|
11 |
+
tokenizer = BertTokenizer.from_pretrained(repo_id)
|
12 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
+
model.to(device)
|
14 |
+
if torch.cuda.device_count() > 1:
|
15 |
+
model = nn.DataParallel(model)
|
16 |
+
model.eval()
|
17 |
+
|
18 |
+
# Load optimized thresholds from Hugging Face Hub
|
19 |
+
thresholds_url = f"https://huggingface.co/{repo_id}/raw/main/thresholds.json"
|
20 |
+
response = requests.get(thresholds_url)
|
21 |
+
thresholds_data = json.loads(response.text)
|
22 |
+
emotion_labels = thresholds_data["emotion_labels"]
|
23 |
+
best_thresholds = thresholds_data["thresholds"]
|
24 |
+
|
25 |
+
# Prediction function
|
26 |
+
def predict_emotions(text):
|
27 |
+
encodings = tokenizer(
|
28 |
+
text,
|
29 |
+
padding='max_length',
|
30 |
+
truncation=True,
|
31 |
+
max_length=128,
|
32 |
+
return_tensors='pt'
|
33 |
+
)
|
34 |
+
input_ids = encodings['input_ids'].to(device)
|
35 |
+
attention_mask = encodings['attention_mask'].to(device)
|
36 |
+
|
37 |
+
with torch.no_grad():
|
38 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
39 |
+
logits = torch.sigmoid(outputs.logits).cpu().numpy()[0]
|
40 |
+
|
41 |
+
predictions = []
|
42 |
+
for i, (logit, thresh) in enumerate(zip(logits, best_thresholds)):
|
43 |
+
if logit >= thresh:
|
44 |
+
predictions.append((emotion_labels[i], logit))
|
45 |
+
|
46 |
+
predictions.sort(key=lambda x: x[1], reverse=True)
|
47 |
+
if not predictions:
|
48 |
+
return "No emotions predicted above thresholds."
|
49 |
+
|
50 |
+
return "\n".join([f"{emotion}: {confidence:.4f}" for emotion, confidence in predictions])
|
51 |
+
|
52 |
+
# Gradio interface
|
53 |
+
interface = gr.Interface(
|
54 |
+
fn=predict_emotions,
|
55 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
|
56 |
+
outputs="text",
|
57 |
+
title="GoEmotions BERT Classifier",
|
58 |
+
description="Predict emotions using a fine-tuned BERT-base model from logasanjeev/goemotions-bert.",
|
59 |
+
examples=[
|
60 |
+
"I’m just chilling today.",
|
61 |
+
"Thank you for saving my life!",
|
62 |
+
"I’m nervous about my exam tomorrow."
|
63 |
+
]
|
64 |
+
)
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
interface.launch()
|