logasanjeev commited on
Commit
34f6f25
·
verified ·
1 Parent(s): 8eb9b68

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -30,7 +30,7 @@ if os.environ["HUGGINGFACEHUB_API_TOKEN"] == "default-token":
30
  # Model and embedding options
31
  LLM_MODELS = {
32
  "High Accuracy (Mixtral-8x7B)": "mistralai/Mixtral-8x7B-Instruct-v0.1",
33
- "Balanced (Gemma-2-9B)": "google/gemma-2-9b-it",
34
  "Lightweight (Mistral-7B)": "mistralai/Mistral-7B-Instruct-v0.2"
35
  }
36
 
@@ -188,7 +188,7 @@ def initialize_qa_chain(llm_model, temperature):
188
  if "503" in str(e):
189
  return f"Error: Hugging Face API temporarily unavailable for {llm_model}. Try 'High Accuracy (Mixtral-8x7B)' or wait and retry.", None
190
  elif "403" in str(e):
191
- return f"Error: Access denied for {llm_model}. Check your HF token permissions or upgrade to a Pro account for larger models.", None
192
  return f"Error initializing QA chain: {str(e)}.", None
193
  except Exception as e:
194
  logger.error(f"Error initializing QA chain for {llm_model}: {str(e)}")
@@ -220,7 +220,7 @@ def answer_question(question, llm_model, embedding_model, temperature, chunk_siz
220
  if "503" in str(e):
221
  return f"Error: Hugging Face API temporarily unavailable for {llm_model}. Try 'High Accuracy (Mixtral-8x7B)' or wait and retry.", chat_history
222
  elif "403" in str(e):
223
- return f"Error: Access denied for {llm_model}. Check your HF token permissions or upgrade to a Pro account for larger models.", chat_history
224
  return f"Error answering question: {str(e)}", chat_history
225
  except Exception as e:
226
  logger.error(f"Error answering question: {str(e)}")
@@ -301,7 +301,6 @@ with gr.Blocks(theme=gr.themes.Soft(), title="DocTalk: Document Q&A Chatbot") as
301
  inputs=[llm_model, temperature],
302
  outputs=[status, chat_display]
303
  )
304
- question里的
305
  question.submit(
306
  fn=answer_question,
307
  inputs=[question, llm_model, embedding_model, temperature, chunk_size, chunk_overlap],
 
30
  # Model and embedding options
31
  LLM_MODELS = {
32
  "High Accuracy (Mixtral-8x7B)": "mistralai/Mixtral-8x7B-Instruct-v0.1",
33
+ "Balanced (Gemma-2-2B)": "google/gemma-2-2b-it",
34
  "Lightweight (Mistral-7B)": "mistralai/Mistral-7B-Instruct-v0.2"
35
  }
36
 
 
188
  if "503" in str(e):
189
  return f"Error: Hugging Face API temporarily unavailable for {llm_model}. Try 'High Accuracy (Mixtral-8x7B)' or wait and retry.", None
190
  elif "403" in str(e):
191
+ return f"Error: Access denied for {llm_model}. Free-tier API limits models >10GB. Try 'High Accuracy (Mixtral-8x7B)' or upgrade to Pro at https://huggingface.co/settings/billing.", None
192
  return f"Error initializing QA chain: {str(e)}.", None
193
  except Exception as e:
194
  logger.error(f"Error initializing QA chain for {llm_model}: {str(e)}")
 
220
  if "503" in str(e):
221
  return f"Error: Hugging Face API temporarily unavailable for {llm_model}. Try 'High Accuracy (Mixtral-8x7B)' or wait and retry.", chat_history
222
  elif "403" in str(e):
223
+ return f"Error: Access denied for {llm_model}. Free-tier API limits models >10GB. Try 'High Accuracy (Mixtral-8x7B)' or upgrade to Pro at https://huggingface.co/settings/billing.", chat_history
224
  return f"Error answering question: {str(e)}", chat_history
225
  except Exception as e:
226
  logger.error(f"Error answering question: {str(e)}")
 
301
  inputs=[llm_model, temperature],
302
  outputs=[status, chat_display]
303
  )
 
304
  question.submit(
305
  fn=answer_question,
306
  inputs=[question, llm_model, embedding_model, temperature, chunk_size, chunk_overlap],