Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,11 @@
|
|
1 |
import os
|
2 |
import logging
|
3 |
-
import
|
4 |
-
from typing import List, Optional, Tuple
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
-
import spaces
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from langchain_community.vectorstores import FAISS
|
10 |
from langchain.embeddings.base import Embeddings
|
11 |
-
from gradio_client import Client
|
12 |
-
import requests
|
13 |
from tqdm import tqdm
|
14 |
|
15 |
# Configuration
|
@@ -17,7 +13,7 @@ QWEN_API_URL = "Qwen/Qwen2.5-Max-Demo" # Gradio API for Qwen2.5 chat
|
|
17 |
CHUNK_SIZE = 800
|
18 |
TOP_K_RESULTS = 150
|
19 |
SIMILARITY_THRESHOLD = 0.4
|
20 |
-
PASSWORD_HASH = "
|
21 |
|
22 |
BASE_SYSTEM_PROMPT = """
|
23 |
Répondez en français selon ces règles :
|
@@ -83,30 +79,29 @@ def split_text_into_chunks(text: str) -> List[str]:
|
|
83 |
|
84 |
return chunks
|
85 |
|
86 |
-
def create_new_database(file_content: str, db_name: str, password: str, progress=gr.Progress()) -> str:
|
87 |
"""Create a new FAISS database from uploaded file"""
|
88 |
if password != PASSWORD_HASH:
|
89 |
-
return "Incorrect password. Database creation failed."
|
90 |
|
91 |
if not file_content.strip():
|
92 |
-
return "Uploaded file is empty. Database creation failed."
|
93 |
|
94 |
if not db_name.isalnum():
|
95 |
-
return "Database name must be alphanumeric. Database creation failed."
|
96 |
|
97 |
try:
|
98 |
-
# Define file names for the FAISS database
|
99 |
faiss_file = f"{db_name}-index.faiss"
|
100 |
pkl_file = f"{db_name}-index.pkl"
|
101 |
-
|
102 |
# Check if the database already exists
|
103 |
if os.path.exists(faiss_file) or os.path.exists(pkl_file):
|
104 |
-
return f"Database '{db_name}' already exists."
|
105 |
|
106 |
# Initialize embeddings and split text
|
107 |
chunks = split_text_into_chunks(file_content)
|
108 |
if not chunks:
|
109 |
-
return "No valid chunks generated. Database creation failed."
|
110 |
|
111 |
logging.info(f"Creating {len(chunks)} chunks...")
|
112 |
progress(0, desc="Starting embedding process...")
|
@@ -122,39 +117,34 @@ def create_new_database(file_content: str, db_name: str, password: str, progress
|
|
122 |
text_embeddings=list(zip(chunks, embeddings_list)),
|
123 |
embedding=embeddings
|
124 |
)
|
125 |
-
|
126 |
-
# Save the FAISS database to the root directory
|
127 |
vector_store.save_local(".")
|
128 |
logging.info(f"FAISS database saved to: {faiss_file} and {pkl_file}")
|
129 |
|
130 |
-
# Rename the default FAISS files to match the desired naming convention
|
131 |
-
os.rename("index.faiss", faiss_file)
|
132 |
-
os.rename("index.pkl", pkl_file)
|
133 |
-
|
134 |
# Verify files were created
|
135 |
if not os.path.exists(faiss_file) or not os.path.exists(pkl_file):
|
136 |
-
return f"Failed to save FAISS database files
|
137 |
-
logging.info(f"FAISS database files: {faiss_file}, {pkl_file}")
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
return f"Database '{db_name}' created successfully."
|
140 |
except Exception as e:
|
141 |
logging.error(f"Database creation failed: {str(e)}")
|
142 |
-
return f"Error creating database: {str(e)}"
|
143 |
|
144 |
-
def generate_response(user_input: str, db_name: str) ->
|
145 |
"""Generate response using Qwen2.5 MAX"""
|
146 |
try:
|
147 |
if not db_name:
|
148 |
return "Please select a database to chat with."
|
149 |
|
150 |
-
# Define file names for the FAISS database
|
151 |
faiss_file = f"{db_name}-index.faiss"
|
152 |
pkl_file = f"{db_name}-index.pkl"
|
153 |
|
154 |
if not os.path.exists(faiss_file) or not os.path.exists(pkl_file):
|
155 |
return f"Database '{db_name}' does not exist."
|
156 |
|
157 |
-
# Load the FAISS database
|
158 |
vector_store = FAISS.load_local(".", embeddings, allow_dangerous_deserialization=True)
|
159 |
|
160 |
# Contextual search
|
@@ -200,7 +190,7 @@ def generate_response(user_input: str, db_name: str) -> Optional[str]:
|
|
200 |
|
201 |
except Exception as e:
|
202 |
logging.error(f"Generation error: {str(e)}", exc_info=True)
|
203 |
-
return
|
204 |
|
205 |
# Initialize models and vector store
|
206 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -216,11 +206,7 @@ with gr.Blocks() as app:
|
|
216 |
|
217 |
def update_db_list():
|
218 |
"""Update the list of available databases"""
|
219 |
-
return [
|
220 |
-
name.replace("-index.faiss", "") # Remove "-index.faiss" suffix for display
|
221 |
-
for name in os.listdir(".")
|
222 |
-
if name.endswith("-index.faiss")
|
223 |
-
]
|
224 |
|
225 |
with gr.Tab("Create Database"):
|
226 |
gr.Markdown("## Create a New FAISS Database")
|
@@ -232,7 +218,7 @@ with gr.Blocks() as app:
|
|
232 |
|
233 |
def handle_create(file, db_name, password, progress=gr.Progress()):
|
234 |
if not file or not db_name or not password:
|
235 |
-
return "Please provide all required inputs."
|
236 |
|
237 |
# Check if the file is valid
|
238 |
if isinstance(file, str): # Gradio provides the file path as a string
|
@@ -240,15 +226,12 @@ with gr.Blocks() as app:
|
|
240 |
with open(file, "r", encoding="utf-8") as f:
|
241 |
file_content = f.read()
|
242 |
except Exception as e:
|
243 |
-
return f"Error reading file: {str(e)}"
|
244 |
else:
|
245 |
-
return "Invalid file format. Please upload a .txt file."
|
246 |
|
247 |
-
result = create_new_database(file_content, db_name, password, progress)
|
248 |
-
|
249 |
-
# Update the database list
|
250 |
-
return result, update_db_list()
|
251 |
-
return result, None
|
252 |
|
253 |
create_button.click(
|
254 |
handle_create,
|
@@ -267,8 +250,8 @@ with gr.Blocks() as app:
|
|
267 |
if not db_name:
|
268 |
return "", history + [("System", "Please select a database to chat with.")]
|
269 |
response = generate_response(message, db_name)
|
270 |
-
return "", history + [(message, response
|
271 |
-
|
272 |
msg.submit(
|
273 |
chat_response,
|
274 |
inputs=[msg, db_select, chatbot],
|
@@ -287,10 +270,4 @@ with gr.Blocks() as app:
|
|
287 |
)
|
288 |
|
289 |
if __name__ == "__main__":
|
290 |
-
# Log existing databases at startup
|
291 |
-
logging.info("Existing databases:")
|
292 |
-
for name in os.listdir("."):
|
293 |
-
if name.endswith("-index.faiss"):
|
294 |
-
logging.info(f"- {name}")
|
295 |
-
|
296 |
app.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
+
from typing import List, Tuple
|
|
|
4 |
import torch
|
5 |
import gradio as gr
|
|
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
from langchain.embeddings.base import Embeddings
|
|
|
|
|
9 |
from tqdm import tqdm
|
10 |
|
11 |
# Configuration
|
|
|
13 |
CHUNK_SIZE = 800
|
14 |
TOP_K_RESULTS = 150
|
15 |
SIMILARITY_THRESHOLD = 0.4
|
16 |
+
PASSWORD_HASH = os.getenv("PASSWORD_HASH", "default_password") # Use environment variable for password
|
17 |
|
18 |
BASE_SYSTEM_PROMPT = """
|
19 |
Répondez en français selon ces règles :
|
|
|
79 |
|
80 |
return chunks
|
81 |
|
82 |
+
def create_new_database(file_content: str, db_name: str, password: str, progress=gr.Progress()) -> Tuple[str, List[str]]:
|
83 |
"""Create a new FAISS database from uploaded file"""
|
84 |
if password != PASSWORD_HASH:
|
85 |
+
return "Incorrect password. Database creation failed.", []
|
86 |
|
87 |
if not file_content.strip():
|
88 |
+
return "Uploaded file is empty. Database creation failed.", []
|
89 |
|
90 |
if not db_name.isalnum():
|
91 |
+
return "Database name must be alphanumeric. Database creation failed.", []
|
92 |
|
93 |
try:
|
|
|
94 |
faiss_file = f"{db_name}-index.faiss"
|
95 |
pkl_file = f"{db_name}-index.pkl"
|
96 |
+
|
97 |
# Check if the database already exists
|
98 |
if os.path.exists(faiss_file) or os.path.exists(pkl_file):
|
99 |
+
return f"Database '{db_name}' already exists.", []
|
100 |
|
101 |
# Initialize embeddings and split text
|
102 |
chunks = split_text_into_chunks(file_content)
|
103 |
if not chunks:
|
104 |
+
return "No valid chunks generated. Database creation failed.", []
|
105 |
|
106 |
logging.info(f"Creating {len(chunks)} chunks...")
|
107 |
progress(0, desc="Starting embedding process...")
|
|
|
117 |
text_embeddings=list(zip(chunks, embeddings_list)),
|
118 |
embedding=embeddings
|
119 |
)
|
|
|
|
|
120 |
vector_store.save_local(".")
|
121 |
logging.info(f"FAISS database saved to: {faiss_file} and {pkl_file}")
|
122 |
|
|
|
|
|
|
|
|
|
123 |
# Verify files were created
|
124 |
if not os.path.exists(faiss_file) or not os.path.exists(pkl_file):
|
125 |
+
return f"Failed to save FAISS database files.", []
|
126 |
+
logging.info(f"FAISS database files created: {faiss_file}, {pkl_file}")
|
127 |
+
|
128 |
+
# Update the list of available databases
|
129 |
+
db_list = [os.path.splitext(f)[0].replace("-index", "") for f in os.listdir(".") if f.endswith(".faiss")]
|
130 |
+
return f"Database '{db_name}' created successfully.", db_list
|
131 |
|
|
|
132 |
except Exception as e:
|
133 |
logging.error(f"Database creation failed: {str(e)}")
|
134 |
+
return f"Error creating database: {str(e)}", []
|
135 |
|
136 |
+
def generate_response(user_input: str, db_name: str) -> str:
|
137 |
"""Generate response using Qwen2.5 MAX"""
|
138 |
try:
|
139 |
if not db_name:
|
140 |
return "Please select a database to chat with."
|
141 |
|
|
|
142 |
faiss_file = f"{db_name}-index.faiss"
|
143 |
pkl_file = f"{db_name}-index.pkl"
|
144 |
|
145 |
if not os.path.exists(faiss_file) or not os.path.exists(pkl_file):
|
146 |
return f"Database '{db_name}' does not exist."
|
147 |
|
|
|
148 |
vector_store = FAISS.load_local(".", embeddings, allow_dangerous_deserialization=True)
|
149 |
|
150 |
# Contextual search
|
|
|
190 |
|
191 |
except Exception as e:
|
192 |
logging.error(f"Generation error: {str(e)}", exc_info=True)
|
193 |
+
return "Erreur de génération - Veuillez réessayer."
|
194 |
|
195 |
# Initialize models and vector store
|
196 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
206 |
|
207 |
def update_db_list():
|
208 |
"""Update the list of available databases"""
|
209 |
+
return [os.path.splitext(f)[0].replace("-index", "") for f in os.listdir(".") if f.endswith(".faiss")]
|
|
|
|
|
|
|
|
|
210 |
|
211 |
with gr.Tab("Create Database"):
|
212 |
gr.Markdown("## Create a New FAISS Database")
|
|
|
218 |
|
219 |
def handle_create(file, db_name, password, progress=gr.Progress()):
|
220 |
if not file or not db_name or not password:
|
221 |
+
return "Please provide all required inputs.", []
|
222 |
|
223 |
# Check if the file is valid
|
224 |
if isinstance(file, str): # Gradio provides the file path as a string
|
|
|
226 |
with open(file, "r", encoding="utf-8") as f:
|
227 |
file_content = f.read()
|
228 |
except Exception as e:
|
229 |
+
return f"Error reading file: {str(e)}", []
|
230 |
else:
|
231 |
+
return "Invalid file format. Please upload a .txt file.", []
|
232 |
|
233 |
+
result, db_list = create_new_database(file_content, db_name, password, progress)
|
234 |
+
return result, db_list
|
|
|
|
|
|
|
235 |
|
236 |
create_button.click(
|
237 |
handle_create,
|
|
|
250 |
if not db_name:
|
251 |
return "", history + [("System", "Please select a database to chat with.")]
|
252 |
response = generate_response(message, db_name)
|
253 |
+
return "", history + [(message, response)]
|
254 |
+
|
255 |
msg.submit(
|
256 |
chat_response,
|
257 |
inputs=[msg, db_select, chatbot],
|
|
|
270 |
)
|
271 |
|
272 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
app.launch(server_name="0.0.0.0", server_port=7860)
|