# Ultralytics YOLO 🚀, AGPL-3.0 license """ Convolution modules """ import math import numpy as np import torch import torch.nn as nn from torch.nn import init from torch.nn.parameter import Parameter __all__ = ('Conv', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv', 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv') def autopad(k, p=None, d=1): # kernel, padding, dilation """Pad to 'same' shape outputs.""" if d > 1: k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p class Conv(nn.Module): """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation).""" default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): """Initialize Conv layer with given arguments including activation.""" super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): """Apply convolution, batch normalization and activation to input tensor.""" return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): """Perform transposed convolution of 2D data.""" return self.act(self.conv(x)) class Conv2(Conv): """Simplified RepConv module with Conv fusing.""" def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True): """Initialize Conv layer with given arguments including activation.""" super().__init__(c1, c2, k, s, p, g=g, d=d, act=act) self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv def forward(self, x): """Apply convolution, batch normalization and activation to input tensor.""" return self.act(self.bn(self.conv(x) + self.cv2(x))) def fuse_convs(self): """Fuse parallel convolutions.""" w = torch.zeros_like(self.conv.weight.data) i = [x // 2 for x in w.shape[2:]] w[:, :, i[0]:i[0] + 1, i[1]:i[1] + 1] = self.cv2.weight.data.clone() self.conv.weight.data += w self.__delattr__('cv2') class LightConv(nn.Module): """Light convolution with args(ch_in, ch_out, kernel). https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py """ def __init__(self, c1, c2, k=1, act=nn.ReLU()): """Initialize Conv layer with given arguments including activation.""" super().__init__() self.conv1 = Conv(c1, c2, 1, act=False) self.conv2 = DWConv(c2, c2, k, act=act) def forward(self, x): """Apply 2 convolutions to input tensor.""" return self.conv2(self.conv1(x)) class DWConv(Conv): """Depth-wise convolution.""" def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act) class DWConvTranspose2d(nn.ConvTranspose2d): """Depth-wise transpose convolution.""" def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2)) class ConvTranspose(nn.Module): """Convolution transpose 2d layer.""" default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True): """Initialize ConvTranspose2d layer with batch normalization and activation function.""" super().__init__() self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn) self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity() self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): """Applies transposed convolutions, batch normalization and activation to input.""" return self.act(self.bn(self.conv_transpose(x))) def forward_fuse(self, x): """Applies activation and convolution transpose operation to input.""" return self.act(self.conv_transpose(x)) class Focus(nn.Module): """Focus wh information into c-space.""" def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super().__init__() self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act) # self.contract = Contract(gain=2) def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1)) # return self.conv(self.contract(x)) class GhostConv(nn.Module): """Ghost Convolution https://github.com/huawei-noah/ghostnet.""" def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups super().__init__() c_ = c2 // 2 # hidden channels self.cv1 = Conv(c1, c_, k, s, None, g, act=act) self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act) def forward(self, x): """Forward propagation through a Ghost Bottleneck layer with skip connection.""" y = self.cv1(x) return torch.cat((y, self.cv2(y)), 1) class RepConv(nn.Module): """RepConv is a basic rep-style block, including training and deploy status This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py """ default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False): super().__init__() assert k == 3 and p == 1 self.g = g self.c1 = c1 self.c2 = c2 self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False) self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False) def forward_fuse(self, x): """Forward process""" return self.act(self.conv(x)) def forward(self, x): """Forward process""" id_out = 0 if self.bn is None else self.bn(x) return self.act(self.conv1(x) + self.conv2(x) + id_out) def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1) kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2) kernelid, biasid = self._fuse_bn_tensor(self.bn) return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid def _avg_to_3x3_tensor(self, avgp): channels = self.c1 groups = self.g kernel_size = avgp.kernel_size input_dim = channels // groups k = torch.zeros((channels, input_dim, kernel_size, kernel_size)) k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2 return k def _pad_1x1_to_3x3_tensor(self, kernel1x1): if kernel1x1 is None: return 0 else: return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1]) def _fuse_bn_tensor(self, branch): if branch is None: return 0, 0 if isinstance(branch, Conv): kernel = branch.conv.weight running_mean = branch.bn.running_mean running_var = branch.bn.running_var gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn.eps elif isinstance(branch, nn.BatchNorm2d): if not hasattr(self, 'id_tensor'): input_dim = self.c1 // self.g kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32) for i in range(self.c1): kernel_value[i, i % input_dim, 1, 1] = 1 self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device) kernel = self.id_tensor running_mean = branch.running_mean running_var = branch.running_var gamma = branch.weight beta = branch.bias eps = branch.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std def fuse_convs(self): if hasattr(self, 'conv'): return kernel, bias = self.get_equivalent_kernel_bias() self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels, out_channels=self.conv1.conv.out_channels, kernel_size=self.conv1.conv.kernel_size, stride=self.conv1.conv.stride, padding=self.conv1.conv.padding, dilation=self.conv1.conv.dilation, groups=self.conv1.conv.groups, bias=True).requires_grad_(False) self.conv.weight.data = kernel self.conv.bias.data = bias for para in self.parameters(): para.detach_() self.__delattr__('conv1') self.__delattr__('conv2') if hasattr(self, 'nm'): self.__delattr__('nm') if hasattr(self, 'bn'): self.__delattr__('bn') if hasattr(self, 'id_tensor'): self.__delattr__('id_tensor') class ChannelAttention(nn.Module): """Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet.""" def __init__(self, channels: int) -> None: super().__init__() self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True) self.act = nn.Sigmoid() def forward(self, x: torch.Tensor) -> torch.Tensor: return x * self.act(self.fc(self.pool(x))) class SpatialAttention(nn.Module): """Spatial-attention module.""" def __init__(self, kernel_size=7): """Initialize Spatial-attention module with kernel size argument.""" super().__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.act = nn.Sigmoid() def forward(self, x): """Apply channel and spatial attention on input for feature recalibration.""" return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1))) class CBAM(nn.Module): """Convolutional Block Attention Module.""" def __init__(self, c1, kernel_size=7): # ch_in, kernels super().__init__() self.channel_attention = ChannelAttention(c1) self.spatial_attention = SpatialAttention(kernel_size) def forward(self, x): """Applies the forward pass through C1 module.""" return self.spatial_attention(self.channel_attention(x)) class Concat(nn.Module): """Concatenate a list of tensors along dimension.""" def __init__(self, dimension=1): """Concatenates a list of tensors along a specified dimension.""" super().__init__() self.d = dimension def forward(self, x): """Forward pass for the YOLOv8 mask Proto module.""" return torch.cat(x, self.d) def channel_shuffle(x, groups=2): ##shuffle channel # RESHAPE----->transpose------->Flatten B, C, H, W = x.size() out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous() out = out.view(B, C, H, W) return out class GAM_Attention(nn.Module): def __init__(self, c1, c2, group=True, rate=4): super(GAM_Attention, self).__init__() self.channel_attention = nn.Sequential( nn.Linear(c1, int(c1 / rate)), nn.ReLU(inplace=True), nn.Linear(int(c1 / rate), c1) ) self.spatial_attention = nn.Sequential( nn.Conv2d(c1, c1 // rate, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(c1, int(c1 / rate), kernel_size=7, padding=3), nn.BatchNorm2d(int(c1 / rate)), nn.ReLU(inplace=True), nn.Conv2d(c1 // rate, c2, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(int(c1 / rate), c2, kernel_size=7, padding=3), nn.BatchNorm2d(c2) ) def forward(self, x): b, c, h, w = x.shape x_permute = x.permute(0, 2, 3, 1).view(b, -1, c) x_att_permute = self.channel_attention(x_permute).view(b, h, w, c) x_channel_att = x_att_permute.permute(0, 3, 1, 2) # x_channel_att=channel_shuffle(x_channel_att,4) #last shuffle x = x * x_channel_att x_spatial_att = self.spatial_attention(x).sigmoid() x_spatial_att = channel_shuffle(x_spatial_att, 4) # last shuffle out = x * x_spatial_att # out=channel_shuffle(out,4) #last shuffle return out class GCT(nn.Module): def __init__(self, channels, c=2, eps=1e-5): super().__init__() self.avgpool = nn.AdaptiveAvgPool2d(1) self.eps = eps self.c = c def forward(self, x): y = self.avgpool(x) mean = y.mean(dim=1, keepdim=True) mean_x2 = (y ** 2).mean(dim=1, keepdim=True) var = mean_x2 - mean ** 2 y_norm = (y - mean) / torch.sqrt(var + self.eps) y_transform = torch.exp(-(y_norm ** 2 / 2 * self.c)) return x * y_transform.expand_as(x) class ShuffleAttention(nn.Module): def __init__(self, channel=512, reduction=16, G=8): super().__init__() self.G = G self.channel = channel self.avg_pool = nn.AdaptiveAvgPool2d(1) self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G)) self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1)) self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1)) self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1)) self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1)) self.sigmoid = nn.Sigmoid() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) @staticmethod def channel_shuffle(x, groups): b, c, h, w = x.shape x = x.reshape(b, groups, -1, h, w) x = x.permute(0, 2, 1, 3, 4) # flatten x = x.reshape(b, -1, h, w) return x def forward(self, x): b, c, h, w = x.size() # group into subfeatures x = x.view(b * self.G, -1, h, w) # bs*G,c//G,h,w # channel_split x_0, x_1 = x.chunk(2, dim=1) # bs*G,c//(2*G),h,w # channel attention x_channel = self.avg_pool(x_0) # bs*G,c//(2*G),1,1 x_channel = self.cweight * x_channel + self.cbias # bs*G,c//(2*G),1,1 x_channel = x_0 * self.sigmoid(x_channel) # spatial attention x_spatial = self.gn(x_1) # bs*G,c//(2*G),h,w x_spatial = self.sweight * x_spatial + self.sbias # bs*G,c//(2*G),h,w x_spatial = x_1 * self.sigmoid(x_spatial) # bs*G,c//(2*G),h,w # concatenate along channel axis out = torch.cat([x_channel, x_spatial], dim=1) # bs*G,c//G,h,w out = out.contiguous().view(b, -1, h, w) # channel shuffle out = self.channel_shuffle(out, 2) return out class ResBlock_CBAM(nn.Module): def __init__(self, in_places, places, stride=1, downsampling=False, expansion=1): super(ResBlock_CBAM, self).__init__() self.expansion = expansion self.downsampling = downsampling self.bottleneck = nn.Sequential( nn.Conv2d(in_channels=in_places, out_channels=places, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(places), nn.LeakyReLU(0.1, inplace=True), nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(places), nn.LeakyReLU(0.1, inplace=True), nn.Conv2d(in_channels=places, out_channels=places * self.expansion, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(places * self.expansion), ) # self.cbam = CBAM(c1=places * self.expansion, c2=places * self.expansion, ) self.cbam = CBAM(c1=places * self.expansion) if self.downsampling: self.downsample = nn.Sequential( nn.Conv2d(in_channels=in_places, out_channels=places * self.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(places * self.expansion) ) self.relu = nn.ReLU(inplace=True) def forward(self, x): residual = x out = self.bottleneck(x) out = self.cbam(out) if self.downsampling: residual = self.downsample(x) out += residual out = self.relu(out) return out class ECAAttention(nn.Module): """Constructs a ECA module. Args: channel: Number of channels of the input feature map k_size: Adaptive selection of kernel size """ def __init__(self, c1, k_size=3): super(ECAAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): # feature descriptor on the global spatial information y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) # Multi-scale information fusion y = self.sigmoid(y) return x * y.expand_as(x) class MHSA(nn.Module): def __init__(self, n_dims, width=14, height=14, heads=4, pos_emb=False): super(MHSA, self).__init__() self.heads = heads self.query = nn.Conv2d(n_dims, n_dims, kernel_size=1) self.key = nn.Conv2d(n_dims, n_dims, kernel_size=1) self.value = nn.Conv2d(n_dims, n_dims, kernel_size=1) self.pos = pos_emb if self.pos: self.rel_h_weight = nn.Parameter(torch.randn([1, heads, (n_dims) // heads, 1, int(height)]), requires_grad=True) self.rel_w_weight = nn.Parameter(torch.randn([1, heads, (n_dims) // heads, int(width), 1]), requires_grad=True) self.softmax = nn.Softmax(dim=-1) def forward(self, x): n_batch, C, width, height = x.size() q = self.query(x).view(n_batch, self.heads, C // self.heads, -1) k = self.key(x).view(n_batch, self.heads, C // self.heads, -1) v = self.value(x).view(n_batch, self.heads, C // self.heads, -1) content_content = torch.matmul(q.permute(0, 1, 3, 2), k) # 1,C,h*w,h*w c1, c2, c3, c4 = content_content.size() if self.pos: content_position = (self.rel_h_weight + self.rel_w_weight).view(1, self.heads, C // self.heads, -1).permute( 0, 1, 3, 2) # 1,4,1024,64 content_position = torch.matmul(content_position, q) # ([1, 4, 1024, 256]) content_position = content_position if ( content_content.shape == content_position.shape) else content_position[:, :, :c3, ] assert (content_content.shape == content_position.shape) energy = content_content + content_position else: energy = content_content attention = self.softmax(energy) out = torch.matmul(v, attention.permute(0, 1, 3, 2)) # 1,4,256,64 out = out.view(n_batch, C, width, height) return out import torch.nn.functional as F from timm.layers.create_act import create_act_layer, get_act_layer from timm.layers.helpers import make_divisible from timm.layers.mlp import ConvMlp from timm.layers.norm import LayerNorm2d class GlobalContext(nn.Module): def __init__(self, channels, use_attn=True, fuse_add=False, fuse_scale=True, init_last_zero=False, rd_ratio=1. / 8, rd_channels=None, rd_divisor=1, act_layer=nn.ReLU, gate_layer='sigmoid'): super(GlobalContext, self).__init__() act_layer = get_act_layer(act_layer) self.conv_attn = nn.Conv2d(channels, 1, kernel_size=1, bias=True) if use_attn else None if rd_channels is None: rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) if fuse_add: self.mlp_add = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d) else: self.mlp_add = None if fuse_scale: self.mlp_scale = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d) else: self.mlp_scale = None self.gate = create_act_layer(gate_layer) self.init_last_zero = init_last_zero self.reset_parameters() def reset_parameters(self): if self.conv_attn is not None: nn.init.kaiming_normal_(self.conv_attn.weight, mode='fan_in', nonlinearity='relu') if self.mlp_add is not None: nn.init.zeros_(self.mlp_add.fc2.weight) def forward(self, x): B, C, H, W = x.shape if self.conv_attn is not None: attn = self.conv_attn(x).reshape(B, 1, H * W) # (B, 1, H * W) attn = F.softmax(attn, dim=-1).unsqueeze(3) # (B, 1, H * W, 1) context = x.reshape(B, C, H * W).unsqueeze(1) @ attn context = context.view(B, C, 1, 1) else: context = x.mean(dim=(2, 3), keepdim=True) if self.mlp_scale is not None: mlp_x = self.mlp_scale(context) x = x * self.gate(mlp_x) if self.mlp_add is not None: mlp_x = self.mlp_add(context) x = x + mlp_x return x from timm.layers.create_conv2d import create_conv2d class GatherExcite(nn.Module): def __init__( self, channels, feat_size=None, extra_params=False, extent=0, use_mlp=True, rd_ratio=1. / 16, rd_channels=None, rd_divisor=1, add_maxpool=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, gate_layer='sigmoid'): super(GatherExcite, self).__init__() self.add_maxpool = add_maxpool act_layer = get_act_layer(act_layer) self.extent = extent if extra_params: self.gather = nn.Sequential() if extent == 0: assert feat_size is not None, 'spatial feature size must be specified for global extent w/ params' self.gather.add_module( 'conv1', create_conv2d(channels, channels, kernel_size=feat_size, stride=1, depthwise=True)) if norm_layer: self.gather.add_module(f'norm1', nn.BatchNorm2d(channels)) else: assert extent % 2 == 0 num_conv = int(math.log2(extent)) for i in range(num_conv): self.gather.add_module( f'conv{i + 1}', create_conv2d(channels, channels, kernel_size=3, stride=2, depthwise=True)) if norm_layer: self.gather.add_module(f'norm{i + 1}', nn.BatchNorm2d(channels)) if i != num_conv - 1: self.gather.add_module(f'act{i + 1}', act_layer(inplace=True)) else: self.gather = None if self.extent == 0: self.gk = 0 self.gs = 0 else: assert extent % 2 == 0 self.gk = self.extent * 2 - 1 self.gs = self.extent if not rd_channels: rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) self.mlp = ConvMlp(channels, rd_channels, act_layer=act_layer) if use_mlp else nn.Identity() self.gate = create_act_layer(gate_layer) def forward(self, x): size = x.shape[-2:] if self.gather is not None: x_ge = self.gather(x) else: if self.extent == 0: # global extent x_ge = x.mean(dim=(2, 3), keepdims=True) if self.add_maxpool: # experimental codepath, may remove or change x_ge = 0.5 * x_ge + 0.5 * x.amax((2, 3), keepdim=True) else: x_ge = F.avg_pool2d( x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2, count_include_pad=False) if self.add_maxpool: # experimental codepath, may remove or change x_ge = 0.5 * x_ge + 0.5 * F.max_pool2d(x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2) x_ge = self.mlp(x_ge) if x_ge.shape[-1] != 1 or x_ge.shape[-2] != 1: x_ge = F.interpolate(x_ge, size=size) return x * self.gate(x_ge)