Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,370 Bytes
9d22eee 2a5f9fb df66f6e cf10aa9 efeee6d b5474e9 9d22eee 314f91a 2a5f9fb 6783fa0 cf10aa9 2a5f9fb b5474e9 efeee6d 9d22eee b5474e9 ba18c73 9d22eee cf10aa9 72b38a9 cf10aa9 9d22eee 8d1d021 9d22eee 567d2b9 6da486c e046e31 0109b82 f4d3c9c 6783fa0 dc8017a 9d22eee 2a5f9fb b5474e9 efeee6d 2a5f9fb 567d2b9 2a5f9fb 567d2b9 43d4bec 2a5f9fb b5474e9 309aa01 efeee6d 2a5f9fb 9d22eee 2a5f9fb 9833cdb b5474e9 2a5f9fb 9d22eee 5fab423 64b9b34 2a5f9fb 64b9b34 5fab423 64b9b34 5fab423 860d490 2a5f9fb b5474e9 9d22eee b5474e9 9d22eee 5b27d64 9d22eee 860d490 87ab411 9d22eee 87ab411 9d22eee 87ab411 5b27d64 2a5f9fb b5474e9 907da81 b5474e9 6ef2c5b 7fd8d10 6ef2c5b b5474e9 2135b2d 79d9216 0109b82 0ef9174 0109b82 2135b2d 0ef9174 0109b82 bbf76cb a2e3b42 bbf76cb 0ef9174 a2e3b42 bbf76cb 0ef9174 bbf76cb 2a5f9fb 7e71c4d 2a5f9fb b1a1395 1d20e7c a9a84ae 1d20e7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import Tasks, TaskType
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
task_type: TaskType = TaskType.NotTask
average: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# Scores
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
auto_eval_column_dict.append(
[
task.name,
ColumnContent,
ColumnContent(
task.value.col_name,
"number",
displayed_by_default=(task.value.task_type == TaskType.AVG or task.value.average),
task_type=task.value.task_type,
average=task.value.average,
),
]
)
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Revision", "str", False, False)])
auto_eval_column_dict.append(["num_few_shots", ColumnContent, ColumnContent("Few-shot", "number", False)])
auto_eval_column_dict.append(["add_special_tokens", ColumnContent, ColumnContent("Add Special Tokens", "bool", False)])
auto_eval_column_dict.append(
["llm_jp_eval_version", ColumnContent, ColumnContent("llm-jp-eval version", "str", False)]
)
auto_eval_column_dict.append(["vllm_version", ColumnContent, ColumnContent("vllm version", "str", False)])
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
auto_eval_column_dict.append(["row_id", ColumnContent, ColumnContent("ID", "number", False, dummy=True)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
model_type = ColumnContent("model_type", "str", True)
precision = ColumnContent("precision", "str", True)
add_special_tokens = ColumnContent("add_special_tokens", "str", True)
llm_jp_eval_version = ColumnContent("llm_jp_eval_version", "str", True)
vllm_version = ColumnContent("vllm_version", "str", True)
status = ColumnContent("status", "str", True)
# This class is used to store the model data in the queue
@dataclass(frozen=True)
class EvalQueuedModel:
model: str
revision: str
precision: str
add_special_tokens: str
llm_jp_eval_version: str
vllm_version: str
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟢")
FT = ModelDetails(name="fine-tuned", symbol="🔶")
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
RL = ModelDetails(name="RL-tuned (Preference optimization)", symbol="🟦")
MM = ModelDetails(name="multimodal", symbol="🌸")
BM = ModelDetails(name="base merges and moerges", symbol="🤝")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔶" in type:
return ModelType.FT
if "pretrained" in type or "🟢" in type:
return ModelType.PT
if "RL-tuned" in type or "🟦" in type:
return ModelType.RL
if "instruction-tuned" in type or "⭕" in type:
return ModelType.IFT
if "multimodal" in type or "🌸" in type:
return ModelType.MM
if "base merges and moerges" in type or "🤝" in type:
return ModelType.BM
raise ValueError(f"Unsupported model type: {type}")
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
float32 = ModelDetails("float32")
@staticmethod
def from_str(precision: str) -> "Precision":
if precision == "float16":
return Precision.float16
if precision == "bfloat16":
return Precision.bfloat16
if precision == "float32":
return Precision.float32
raise ValueError(
f"Unsupported precision type: {precision}. Please use 'auto' (recommended), 'float32', 'float16', or 'bfloat16'"
)
class AddSpecialTokens(Enum):
true = ModelDetails("True")
false = ModelDetails("False")
class NumFewShots(Enum):
shots_0 = 0
shots_4 = 4
class LLMJpEvalVersion(Enum):
current = ModelDetails("v1.4.1")
@staticmethod
def from_str(version: str) -> "LLMJpEvalVersion":
if version == "1.4.1":
return LLMJpEvalVersion.current
raise ValueError(f"Unsupported LLMJpEval version: {version}")
class VllmVersion(Enum):
current = ModelDetails("v0.6.3.post1")
@staticmethod
def from_str(version: str) -> "VllmVersion":
if version == "v0.6.3.post1":
return VllmVersion.current
raise ValueError(f"Unsupported VLLM version: {version}")
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn)]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"0~3B": pd.Interval(0, 3, closed="right"),
"3~7B": pd.Interval(3, 7.3, closed="right"),
"7~13B": pd.Interval(7.3, 13, closed="right"),
"13~35B": pd.Interval(13, 35, closed="right"),
"35~60B": pd.Interval(35, 60, closed="right"),
"60B+": pd.Interval(60, 10000, closed="right"),
"?": pd.Interval(-1, 0, closed="right"),
}
|