File size: 7,370 Bytes
9d22eee
2a5f9fb
 
df66f6e
 
cf10aa9
efeee6d
b5474e9
9d22eee
 
 
314f91a
2a5f9fb
 
 
 
 
 
 
 
 
 
6783fa0
cf10aa9
 
2a5f9fb
b5474e9
efeee6d
9d22eee
 
 
 
b5474e9
ba18c73
9d22eee
cf10aa9
 
 
 
 
72b38a9
 
 
 
 
cf10aa9
 
 
9d22eee
8d1d021
9d22eee
 
 
 
 
 
567d2b9
6da486c
e046e31
0109b82
 
 
f4d3c9c
6783fa0
dc8017a
9d22eee
 
 
2a5f9fb
b5474e9
efeee6d
2a5f9fb
 
 
 
567d2b9
2a5f9fb
567d2b9
43d4bec
 
2a5f9fb
 
b5474e9
309aa01
 
 
 
 
 
 
 
 
 
 
efeee6d
2a5f9fb
9d22eee
2a5f9fb
9833cdb
b5474e9
2a5f9fb
 
 
9d22eee
 
 
5fab423
64b9b34
 
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
64b9b34
5fab423
64b9b34
5fab423
860d490
2a5f9fb
b5474e9
9d22eee
 
 
 
 
b5474e9
9d22eee
 
 
5b27d64
9d22eee
860d490
 
87ab411
9d22eee
87ab411
9d22eee
87ab411
5b27d64
 
 
 
2a5f9fb
b5474e9
907da81
 
 
 
b5474e9
6ef2c5b
7fd8d10
 
6ef2c5b
b5474e9
2135b2d
79d9216
0109b82
0ef9174
 
0109b82
2135b2d
0ef9174
0109b82
 
bbf76cb
a2e3b42
bbf76cb
0ef9174
 
a2e3b42
bbf76cb
0ef9174
bbf76cb
 
2a5f9fb
 
7e71c4d
2a5f9fb
 
 
 
b1a1395
1d20e7c
 
 
 
 
 
 
 
a9a84ae
1d20e7c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks, TaskType


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False
    dummy: bool = False
    task_type: TaskType = TaskType.NotTask
    average: bool = False


## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# Scores
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append(
        [
            task.name,
            ColumnContent,
            ColumnContent(
                task.value.col_name,
                "number",
                displayed_by_default=(task.value.task_type == TaskType.AVG or task.value.average),
                task_type=task.value.task_type,
                average=task.value.average,
            ),
        ]
    )
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Revision", "str", False, False)])
auto_eval_column_dict.append(["num_few_shots", ColumnContent, ColumnContent("Few-shot", "number", False)])
auto_eval_column_dict.append(["add_special_tokens", ColumnContent, ColumnContent("Add Special Tokens", "bool", False)])
auto_eval_column_dict.append(
    ["llm_jp_eval_version", ColumnContent, ColumnContent("llm-jp-eval version", "str", False)]
)
auto_eval_column_dict.append(["vllm_version", ColumnContent, ColumnContent("vllm version", "str", False)])
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
auto_eval_column_dict.append(["row_id", ColumnContent, ColumnContent("ID", "number", False, dummy=True)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)


## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    model_type = ColumnContent("model_type", "str", True)
    precision = ColumnContent("precision", "str", True)
    add_special_tokens = ColumnContent("add_special_tokens", "str", True)
    llm_jp_eval_version = ColumnContent("llm_jp_eval_version", "str", True)
    vllm_version = ColumnContent("vllm_version", "str", True)
    status = ColumnContent("status", "str", True)


# This class is used to store the model data in the queue
@dataclass(frozen=True)
class EvalQueuedModel:
    model: str
    revision: str
    precision: str
    add_special_tokens: str
    llm_jp_eval_version: str
    vllm_version: str


## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji


class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟢")
    FT = ModelDetails(name="fine-tuned", symbol="🔶")
    IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
    RL = ModelDetails(name="RL-tuned (Preference optimization)", symbol="🟦")
    MM = ModelDetails(name="multimodal", symbol="🌸")
    BM = ModelDetails(name="base merges and moerges", symbol="🤝")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "🔶" in type:
            return ModelType.FT
        if "pretrained" in type or "🟢" in type:
            return ModelType.PT
        if "RL-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "⭕" in type:
            return ModelType.IFT
        if "multimodal" in type or "🌸" in type:
            return ModelType.MM
        if "base merges and moerges" in type or "🤝" in type:
            return ModelType.BM
        raise ValueError(f"Unsupported model type: {type}")


class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")


class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    float32 = ModelDetails("float32")

    @staticmethod
    def from_str(precision: str) -> "Precision":
        if precision == "float16":
            return Precision.float16
        if precision == "bfloat16":
            return Precision.bfloat16
        if precision == "float32":
            return Precision.float32
        raise ValueError(
            f"Unsupported precision type: {precision}. Please use 'auto' (recommended), 'float32', 'float16', or 'bfloat16'"
        )


class AddSpecialTokens(Enum):
    true = ModelDetails("True")
    false = ModelDetails("False")


class NumFewShots(Enum):
    shots_0 = 0
    shots_4 = 4


class LLMJpEvalVersion(Enum):
    current = ModelDetails("v1.4.1")

    @staticmethod
    def from_str(version: str) -> "LLMJpEvalVersion":
        if version == "1.4.1":
            return LLMJpEvalVersion.current
        raise ValueError(f"Unsupported LLMJpEval version: {version}")


class VllmVersion(Enum):
    current = ModelDetails("v0.6.3.post1")

    @staticmethod
    def from_str(version: str) -> "VllmVersion":
        if version == "v0.6.3.post1":
            return VllmVersion.current
        raise ValueError(f"Unsupported VLLM version: {version}")


# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn)]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]

NUMERIC_INTERVALS = {
    "0~3B": pd.Interval(0, 3, closed="right"),
    "3~7B": pd.Interval(3, 7.3, closed="right"),
    "7~13B": pd.Interval(7.3, 13, closed="right"),
    "13~35B": pd.Interval(13, 35, closed="right"),
    "35~60B": pd.Interval(35, 60, closed="right"),
    "60B+": pd.Interval(60, 10000, closed="right"),
    "?": pd.Interval(-1, 0, closed="right"),
}