File size: 22,514 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Sequence, Tuple, Union

import torch
from mmcv.cnn import (ConvModule, build_activation_layer, build_conv_layer,
                      build_norm_layer)
from mmengine.model import BaseModule, ModuleDict, Sequential
from mmengine.structures import InstanceData, PixelData
from torch import Tensor

from mmpose.evaluation.functional.nms import nearby_joints_nms
from mmpose.models.utils.tta import flip_heatmaps
from mmpose.registry import KEYPOINT_CODECS, MODELS
from mmpose.utils.tensor_utils import to_numpy
from mmpose.utils.typing import (ConfigType, Features, InstanceList,
                                 OptConfigType, OptSampleList, Predictions)
from ...backbones.resnet import BasicBlock
from ..base_head import BaseHead

try:
    from mmcv.ops import DeformConv2d
    has_mmcv_full = True
except (ImportError, ModuleNotFoundError):
    has_mmcv_full = False


class AdaptiveActivationBlock(BaseModule):
    """Adaptive activation convolution block. "Bottom-up human pose estimation
    via disentangled keypoint regression", CVPR'2021.

    Args:
        in_channels (int): Number of input channels
        out_channels (int): Number of output channels
        groups (int): Number of groups. Generally equal to the
            number of joints.
        norm_cfg (dict): Config for normalization layers.
        act_cfg (dict): Config for activation layers.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 groups=1,
                 norm_cfg=dict(type='BN'),
                 act_cfg=dict(type='ReLU'),
                 init_cfg=None):
        super(AdaptiveActivationBlock, self).__init__(init_cfg=init_cfg)

        assert in_channels % groups == 0 and out_channels % groups == 0
        self.groups = groups

        regular_matrix = torch.tensor([[-1, -1, -1, 0, 0, 0, 1, 1, 1],
                                       [-1, 0, 1, -1, 0, 1, -1, 0, 1],
                                       [1, 1, 1, 1, 1, 1, 1, 1, 1]])
        self.register_buffer('regular_matrix', regular_matrix.float())

        self.transform_matrix_conv = build_conv_layer(
            dict(type='Conv2d'),
            in_channels=in_channels,
            out_channels=6 * groups,
            kernel_size=3,
            padding=1,
            groups=groups,
            bias=True)

        if has_mmcv_full:
            self.adapt_conv = DeformConv2d(
                in_channels,
                out_channels,
                kernel_size=3,
                padding=1,
                bias=False,
                groups=groups,
                deform_groups=groups)
        else:
            raise ImportError('Please install the full version of mmcv '
                              'to use `DeformConv2d`.')

        self.norm = build_norm_layer(norm_cfg, out_channels)[1]
        self.act = build_activation_layer(act_cfg)

    def forward(self, x):
        B, _, H, W = x.size()
        residual = x

        affine_matrix = self.transform_matrix_conv(x)
        affine_matrix = affine_matrix.permute(0, 2, 3, 1).contiguous()
        affine_matrix = affine_matrix.view(B, H, W, self.groups, 2, 3)
        offset = torch.matmul(affine_matrix, self.regular_matrix)
        offset = offset.transpose(4, 5).reshape(B, H, W, self.groups * 18)
        offset = offset.permute(0, 3, 1, 2).contiguous()

        x = self.adapt_conv(x, offset)
        x = self.norm(x)
        x = self.act(x + residual)

        return x


class RescoreNet(BaseModule):
    """Rescore net used to predict the OKS score of predicted pose. We use the
    off-the-shelf rescore net pretrained by authors of DEKR.

    Args:
        in_channels (int): Input channels
        norm_indexes (Tuple(int)): Indices of torso in skeleton
        init_cfg (dict, optional): Initialization config dict
    """

    def __init__(
        self,
        in_channels,
        norm_indexes,
        init_cfg=None,
    ):
        super(RescoreNet, self).__init__(init_cfg=init_cfg)

        self.norm_indexes = norm_indexes

        hidden = 256

        self.l1 = torch.nn.Linear(in_channels, hidden, bias=True)
        self.l2 = torch.nn.Linear(hidden, hidden, bias=True)
        self.l3 = torch.nn.Linear(hidden, 1, bias=True)
        self.relu = torch.nn.ReLU()

    def make_feature(self, keypoints, keypoint_scores, skeleton):
        """Combine original scores, joint distance and relative distance to
        make feature.

        Args:
            keypoints (torch.Tensor): predicetd keypoints
            keypoint_scores (torch.Tensor): predicetd keypoint scores
            skeleton (list(list(int))): joint links

        Returns:
            torch.Tensor: feature for each instance
        """
        joint_1, joint_2 = zip(*skeleton)
        num_link = len(skeleton)

        joint_relate = (keypoints[:, joint_1] -
                        keypoints[:, joint_2])[:, :, :2]
        joint_length = joint_relate.norm(dim=2)

        # To use the torso distance to normalize
        normalize = (joint_length[:, self.norm_indexes[0]] +
                     joint_length[:, self.norm_indexes[1]]) / 2
        normalize = normalize.unsqueeze(1).expand(normalize.size(0), num_link)
        normalize = normalize.clamp(min=1).contiguous()

        joint_length = joint_length / normalize[:, :]
        joint_relate = joint_relate / normalize.unsqueeze(-1)
        joint_relate = joint_relate.flatten(1)

        feature = torch.cat((joint_relate, joint_length, keypoint_scores),
                            dim=1).float()
        return feature

    def forward(self, keypoints, keypoint_scores, skeleton):
        feature = self.make_feature(keypoints, keypoint_scores, skeleton)
        x = self.relu(self.l1(feature))
        x = self.relu(self.l2(x))
        x = self.l3(x)
        return x.squeeze(1)


@MODELS.register_module()
class DEKRHead(BaseHead):
    """DisEntangled Keypoint Regression head introduced in `Bottom-up human
    pose estimation via disentangled keypoint regression`_ by Geng et al
    (2021). The head is composed of a heatmap branch and a displacement branch.

    Args:
        in_channels (int | Sequence[int]): Number of channels in the input
            feature map
        num_joints (int): Number of joints
        num_heatmap_filters (int): Number of filters for heatmap branch.
            Defaults to 32
        num_offset_filters_per_joint (int): Number of filters for each joint
            in displacement branch. Defaults to 15
        heatmap_loss (Config): Config of the heatmap loss. Defaults to use
            :class:`KeypointMSELoss`
        displacement_loss (Config): Config of the displacement regression loss.
            Defaults to use :class:`SoftWeightSmoothL1Loss`
        decoder (Config, optional): The decoder config that controls decoding
            keypoint coordinates from the network output. Defaults to ``None``
        rescore_cfg (Config, optional): The config for rescore net which
            estimates OKS via predicted keypoints and keypoint scores.
            Defaults to ``None``
        init_cfg (Config, optional): Config to control the initialization. See
            :attr:`default_init_cfg` for default settings

    .. _`Bottom-up human pose estimation via disentangled keypoint regression`:
        https://arxiv.org/abs/2104.02300
    """

    _version = 2

    def __init__(self,
                 in_channels: Union[int, Sequence[int]],
                 num_keypoints: int,
                 num_heatmap_filters: int = 32,
                 num_displacement_filters_per_keypoint: int = 15,
                 heatmap_loss: ConfigType = dict(
                     type='KeypointMSELoss', use_target_weight=True),
                 displacement_loss: ConfigType = dict(
                     type='SoftWeightSmoothL1Loss',
                     use_target_weight=True,
                     supervise_empty=False),
                 decoder: OptConfigType = None,
                 rescore_cfg: OptConfigType = None,
                 init_cfg: OptConfigType = None):

        if init_cfg is None:
            init_cfg = self.default_init_cfg

        super().__init__(init_cfg)

        self.in_channels = in_channels
        self.num_keypoints = num_keypoints

        # build heatmap branch
        self.heatmap_conv_layers = self._make_heatmap_conv_layers(
            in_channels=in_channels,
            out_channels=1 + num_keypoints,
            num_filters=num_heatmap_filters,
        )

        # build displacement branch
        self.displacement_conv_layers = self._make_displacement_conv_layers(
            in_channels=in_channels,
            out_channels=2 * num_keypoints,
            num_filters=num_keypoints * num_displacement_filters_per_keypoint,
            groups=num_keypoints)

        # build losses
        self.loss_module = ModuleDict(
            dict(
                heatmap=MODELS.build(heatmap_loss),
                displacement=MODELS.build(displacement_loss),
            ))

        # build decoder
        if decoder is not None:
            self.decoder = KEYPOINT_CODECS.build(decoder)
        else:
            self.decoder = None

        # build rescore net
        if rescore_cfg is not None:
            self.rescore_net = RescoreNet(**rescore_cfg)
        else:
            self.rescore_net = None

        # Register the hook to automatically convert old version state dicts
        self._register_load_state_dict_pre_hook(self._load_state_dict_pre_hook)

    @property
    def default_init_cfg(self):
        init_cfg = [
            dict(
                type='Normal', layer=['Conv2d', 'ConvTranspose2d'], std=0.001),
            dict(type='Constant', layer='BatchNorm2d', val=1)
        ]
        return init_cfg

    def _make_heatmap_conv_layers(self, in_channels: int, out_channels: int,
                                  num_filters: int):
        """Create convolutional layers of heatmap branch by given
        parameters."""
        layers = [
            ConvModule(
                in_channels=in_channels,
                out_channels=num_filters,
                kernel_size=1,
                norm_cfg=dict(type='BN')),
            BasicBlock(num_filters, num_filters),
            build_conv_layer(
                dict(type='Conv2d'),
                in_channels=num_filters,
                out_channels=out_channels,
                kernel_size=1),
        ]

        return Sequential(*layers)

    def _make_displacement_conv_layers(self, in_channels: int,
                                       out_channels: int, num_filters: int,
                                       groups: int):
        """Create convolutional layers of displacement branch by given
        parameters."""
        layers = [
            ConvModule(
                in_channels=in_channels,
                out_channels=num_filters,
                kernel_size=1,
                norm_cfg=dict(type='BN')),
            AdaptiveActivationBlock(num_filters, num_filters, groups=groups),
            AdaptiveActivationBlock(num_filters, num_filters, groups=groups),
            build_conv_layer(
                dict(type='Conv2d'),
                in_channels=num_filters,
                out_channels=out_channels,
                kernel_size=1,
                groups=groups)
        ]

        return Sequential(*layers)

    def forward(self, feats: Tuple[Tensor]) -> Tensor:
        """Forward the network. The input is multi scale feature maps and the
        output is a tuple of heatmap and displacement.

        Args:
            feats (Tuple[Tensor]): Multi scale feature maps.

        Returns:
            Tuple[Tensor]: output heatmap and displacement.
        """
        x = feats[-1]

        heatmaps = self.heatmap_conv_layers(x)
        displacements = self.displacement_conv_layers(x)

        return heatmaps, displacements

    def loss(self,
             feats: Tuple[Tensor],
             batch_data_samples: OptSampleList,
             train_cfg: ConfigType = {}) -> dict:
        """Calculate losses from a batch of inputs and data samples.

        Args:
            feats (Tuple[Tensor]): The multi-stage features
            batch_data_samples (List[:obj:`PoseDataSample`]): The batch
                data samples
            train_cfg (dict): The runtime config for training process.
                Defaults to {}

        Returns:
            dict: A dictionary of losses.
        """
        pred_heatmaps, pred_displacements = self.forward(feats)
        gt_heatmaps = torch.stack(
            [d.gt_fields.heatmaps for d in batch_data_samples])
        heatmap_weights = torch.stack(
            [d.gt_fields.heatmap_weights for d in batch_data_samples])
        gt_displacements = torch.stack(
            [d.gt_fields.displacements for d in batch_data_samples])
        displacement_weights = torch.stack(
            [d.gt_fields.displacement_weights for d in batch_data_samples])

        if 'heatmap_mask' in batch_data_samples[0].gt_fields.keys():
            heatmap_mask = torch.stack(
                [d.gt_fields.heatmap_mask for d in batch_data_samples])
        else:
            heatmap_mask = None

        # calculate losses
        losses = dict()
        heatmap_loss = self.loss_module['heatmap'](pred_heatmaps, gt_heatmaps,
                                                   heatmap_weights,
                                                   heatmap_mask)
        displacement_loss = self.loss_module['displacement'](
            pred_displacements, gt_displacements, displacement_weights)

        losses.update({
            'loss/heatmap': heatmap_loss,
            'loss/displacement': displacement_loss,
        })

        return losses

    def predict(self,
                feats: Features,
                batch_data_samples: OptSampleList,
                test_cfg: ConfigType = {}) -> Predictions:
        """Predict results from features.

        Args:
            feats (Tuple[Tensor] | List[Tuple[Tensor]]): The multi-stage
                features (or multiple multi-scale features in TTA)
            batch_data_samples (List[:obj:`PoseDataSample`]): The batch
                data samples
            test_cfg (dict): The runtime config for testing process. Defaults
                to {}

        Returns:
            Union[InstanceList | Tuple[InstanceList | PixelDataList]]: If
            ``test_cfg['output_heatmap']==True``, return both pose and heatmap
            prediction; otherwise only return the pose prediction.

            The pose prediction is a list of ``InstanceData``, each contains
            the following fields:

                - keypoints (np.ndarray): predicted keypoint coordinates in
                    shape (num_instances, K, D) where K is the keypoint number
                    and D is the keypoint dimension
                - keypoint_scores (np.ndarray): predicted keypoint scores in
                    shape (num_instances, K)

            The heatmap prediction is a list of ``PixelData``, each contains
            the following fields:

                - heatmaps (Tensor): The predicted heatmaps in shape (1, h, w)
                    or (K+1, h, w) if keypoint heatmaps are predicted
                - displacements (Tensor): The predicted displacement fields
                    in shape (K*2, h, w)
        """

        assert len(batch_data_samples) == 1, f'DEKRHead only supports ' \
            f'prediction with batch_size 1, but got {len(batch_data_samples)}'

        multiscale_test = test_cfg.get('multiscale_test', False)
        flip_test = test_cfg.get('flip_test', False)
        metainfo = batch_data_samples[0].metainfo
        aug_scales = [1]

        if not multiscale_test:
            feats = [feats]
        else:
            aug_scales = aug_scales + metainfo['aug_scales']

        heatmaps, displacements = [], []
        for feat, s in zip(feats, aug_scales):
            if flip_test:
                assert isinstance(feat, list) and len(feat) == 2
                flip_indices = metainfo['flip_indices']
                _feat, _feat_flip = feat
                _heatmaps, _displacements = self.forward(_feat)
                _heatmaps_flip, _displacements_flip = self.forward(_feat_flip)

                _heatmaps_flip = flip_heatmaps(
                    _heatmaps_flip,
                    flip_mode='heatmap',
                    flip_indices=flip_indices + [len(flip_indices)],
                    shift_heatmap=test_cfg.get('shift_heatmap', False))
                _heatmaps = (_heatmaps + _heatmaps_flip) / 2.0

                _displacements_flip = flip_heatmaps(
                    _displacements_flip,
                    flip_mode='offset',
                    flip_indices=flip_indices,
                    shift_heatmap=False)

                # this is a coordinate amendment.
                x_scale_factor = s * (
                    metainfo['input_size'][0] / _heatmaps.shape[-1])
                _displacements_flip[:, ::2] += (x_scale_factor - 1) / (
                    x_scale_factor)
                _displacements = (_displacements + _displacements_flip) / 2.0

            else:
                _heatmaps, _displacements = self.forward(feat)

            heatmaps.append(_heatmaps)
            displacements.append(_displacements)

        preds = self.decode(heatmaps, displacements, test_cfg, metainfo)

        if test_cfg.get('output_heatmaps', False):
            heatmaps = [hm.detach() for hm in heatmaps]
            displacements = [dm.detach() for dm in displacements]
            B = heatmaps[0].shape[0]
            pred_fields = []
            for i in range(B):
                pred_fields.append(
                    PixelData(
                        heatmaps=heatmaps[0][i],
                        displacements=displacements[0][i]))
            return preds, pred_fields
        else:
            return preds

    def decode(self,
               heatmaps: Tuple[Tensor],
               displacements: Tuple[Tensor],
               test_cfg: ConfigType = {},
               metainfo: dict = {}) -> InstanceList:
        """Decode keypoints from outputs.

        Args:
            heatmaps (Tuple[Tensor]): The output heatmaps inferred from one
                image or multi-scale images.
            displacements (Tuple[Tensor]): The output displacement fields
                inferred from one image or multi-scale images.
            test_cfg (dict): The runtime config for testing process. Defaults
                to {}
            metainfo (dict): The metainfo of test dataset. Defaults to {}

        Returns:
            List[InstanceData]: A list of InstanceData, each contains the
                decoded pose information of the instances of one data sample.
        """

        if self.decoder is None:
            raise RuntimeError(
                f'The decoder has not been set in {self.__class__.__name__}. '
                'Please set the decoder configs in the init parameters to '
                'enable head methods `head.predict()` and `head.decode()`')

        multiscale_test = test_cfg.get('multiscale_test', False)
        skeleton = metainfo.get('skeleton_links', None)

        preds = []
        batch_size = heatmaps[0].shape[0]

        for b in range(batch_size):
            if multiscale_test:
                raise NotImplementedError
            else:
                keypoints, (root_scores,
                            keypoint_scores) = self.decoder.decode(
                                heatmaps[0][b], displacements[0][b])

            # rescore each instance
            if self.rescore_net is not None and skeleton and len(
                    keypoints) > 0:
                instance_scores = self.rescore_net(keypoints, keypoint_scores,
                                                   skeleton)
                instance_scores[torch.isnan(instance_scores)] = 0
                root_scores = root_scores * instance_scores

            # nms
            keypoints, keypoint_scores = to_numpy((keypoints, keypoint_scores))
            scores = to_numpy(root_scores)[..., None] * keypoint_scores
            if len(keypoints) > 0 and test_cfg.get('nms_dist_thr', 0) > 0:
                kpts_db = []
                for i in range(len(keypoints)):
                    kpts_db.append(
                        dict(keypoints=keypoints[i], score=keypoint_scores[i]))
                keep_instance_inds = nearby_joints_nms(
                    kpts_db,
                    test_cfg['nms_dist_thr'],
                    test_cfg.get('nms_joints_thr', None),
                    score_per_joint=True,
                    max_dets=test_cfg.get('max_num_people', 30))
                keypoints = keypoints[keep_instance_inds]
                scores = scores[keep_instance_inds]

            # pack outputs
            preds.append(
                InstanceData(keypoints=keypoints, keypoint_scores=scores))

        return preds

    def _load_state_dict_pre_hook(self, state_dict, prefix, local_meta, *args,
                                  **kwargs):
        """A hook function to convert old-version state dict of
        :class:`DEKRHead` (before MMPose v1.0.0) to a compatible format
        of :class:`DEKRHead`.

        The hook will be automatically registered during initialization.
        """
        version = local_meta.get('version', None)
        if version and version >= self._version:
            return

        # convert old-version state dict
        keys = list(state_dict.keys())
        for k in keys:
            if 'offset_conv_layer' in k:
                v = state_dict.pop(k)
                k = k.replace('offset_conv_layers', 'displacement_conv_layers')
                if 'displacement_conv_layers.3.' in k:
                    # the source and target of displacement vectors are
                    # opposite between two versions.
                    v = -v
                state_dict[k] = v

            if 'heatmap_conv_layers.2' in k:
                # root heatmap is at the first/last channel of the
                # heatmap tensor in MMPose v0.x/1.x, respectively.
                v = state_dict.pop(k)
                state_dict[k] = torch.cat((v[1:], v[:1]))

            if 'rescore_net' in k:
                v = state_dict.pop(k)
                k = k.replace('rescore_net', 'head.rescore_net')
                state_dict[k] = v