File size: 24,705 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# Copyright (c) OpenMMLab. All rights reserved.
import datetime
import os.path as osp
import tempfile
from collections import OrderedDict, defaultdict
from typing import Dict, Optional, Sequence

import numpy as np
from mmengine.evaluator import BaseMetric
from mmengine.fileio import dump, get_local_path, load
from mmengine.logging import MMLogger
from xtcocotools.coco import COCO
from xtcocotools.cocoeval import COCOeval

from mmpose.registry import METRICS
from ..functional import oks_nms, soft_oks_nms


@METRICS.register_module()
class CocoMetric(BaseMetric):
    """COCO pose estimation task evaluation metric.

    Evaluate AR, AP, and mAP for keypoint detection tasks. Support COCO
    dataset and other datasets in COCO format. Please refer to
    `COCO keypoint evaluation <https://cocodataset.org/#keypoints-eval>`__
    for more details.

    Args:
        ann_file (str, optional): Path to the coco format annotation file.
            If not specified, ground truth annotations from the dataset will
            be converted to coco format. Defaults to None
        use_area (bool): Whether to use ``'area'`` message in the annotations.
            If the ground truth annotations (e.g. CrowdPose, AIC) do not have
            the field ``'area'``, please set ``use_area=False``.
            Defaults to ``True``
        iou_type (str): The same parameter as `iouType` in
            :class:`xtcocotools.COCOeval`, which can be ``'keypoints'``, or
            ``'keypoints_crowd'`` (used in CrowdPose dataset).
            Defaults to ``'keypoints'``
        score_mode (str): The mode to score the prediction results which
            should be one of the following options:

                - ``'bbox'``: Take the score of bbox as the score of the
                    prediction results.
                - ``'bbox_keypoint'``: Use keypoint score to rescore the
                    prediction results.
                - ``'bbox_rle'``: Use rle_score to rescore the
                    prediction results.

            Defaults to ``'bbox_keypoint'`
        keypoint_score_thr (float): The threshold of keypoint score. The
            keypoints with score lower than it will not be included to
            rescore the prediction results. Valid only when ``score_mode`` is
            ``bbox_keypoint``. Defaults to ``0.2``
        nms_mode (str): The mode to perform Non-Maximum Suppression (NMS),
            which should be one of the following options:

                - ``'oks_nms'``: Use Object Keypoint Similarity (OKS) to
                    perform NMS.
                - ``'soft_oks_nms'``: Use Object Keypoint Similarity (OKS)
                    to perform soft NMS.
                - ``'none'``: Do not perform NMS. Typically for bottomup mode
                    output.

            Defaults to ``'oks_nms'`
        nms_thr (float): The Object Keypoint Similarity (OKS) threshold
            used in NMS when ``nms_mode`` is ``'oks_nms'`` or
            ``'soft_oks_nms'``. Will retain the prediction results with OKS
            lower than ``nms_thr``. Defaults to ``0.9``
        format_only (bool): Whether only format the output results without
            doing quantitative evaluation. This is designed for the need of
            test submission when the ground truth annotations are absent. If
            set to ``True``, ``outfile_prefix`` should specify the path to
            store the output results. Defaults to ``False``
        outfile_prefix (str | None): The prefix of json files. It includes
            the file path and the prefix of filename, e.g., ``'a/b/prefix'``.
            If not specified, a temp file will be created. Defaults to ``None``
        collect_device (str): Device name used for collecting results from
            different ranks during distributed training. Must be ``'cpu'`` or
            ``'gpu'``. Defaults to ``'cpu'``
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, ``self.default_prefix``
            will be used instead. Defaults to ``None``
    """
    default_prefix: Optional[str] = 'coco'

    def __init__(self,
                 ann_file: Optional[str] = None,
                 use_area: bool = True,
                 iou_type: str = 'keypoints',
                 score_mode: str = 'bbox_keypoint',
                 keypoint_score_thr: float = 0.2,
                 nms_mode: str = 'oks_nms',
                 nms_thr: float = 0.9,
                 format_only: bool = False,
                 outfile_prefix: Optional[str] = None,
                 collect_device: str = 'cpu',
                 prefix: Optional[str] = None) -> None:
        super().__init__(collect_device=collect_device, prefix=prefix)
        self.ann_file = ann_file
        # initialize coco helper with the annotation json file
        # if ann_file is not specified, initialize with the converted dataset
        if ann_file is not None:
            with get_local_path(ann_file) as local_path:
                self.coco = COCO(local_path)
        else:
            self.coco = None

        self.use_area = use_area
        self.iou_type = iou_type

        allowed_score_modes = ['bbox', 'bbox_keypoint', 'bbox_rle', 'keypoint']
        if score_mode not in allowed_score_modes:
            raise ValueError(
                "`score_mode` should be one of 'bbox', 'bbox_keypoint', "
                f"'bbox_rle', but got {score_mode}")
        self.score_mode = score_mode
        self.keypoint_score_thr = keypoint_score_thr

        allowed_nms_modes = ['oks_nms', 'soft_oks_nms', 'none']
        if nms_mode not in allowed_nms_modes:
            raise ValueError(
                "`nms_mode` should be one of 'oks_nms', 'soft_oks_nms', "
                f"'none', but got {nms_mode}")
        self.nms_mode = nms_mode
        self.nms_thr = nms_thr

        if format_only:
            assert outfile_prefix is not None, '`outfile_prefix` can not be '\
                'None when `format_only` is True, otherwise the result file '\
                'will be saved to a temp directory which will be cleaned up '\
                'in the end.'
        elif ann_file is not None:
            # do evaluation only if the ground truth annotations exist
            assert 'annotations' in load(ann_file), \
                'Ground truth annotations are required for evaluation '\
                'when `format_only` is False.'

        self.format_only = format_only
        self.outfile_prefix = outfile_prefix

    def process(self, data_batch: Sequence[dict],
                data_samples: Sequence[dict]) -> None:
        """Process one batch of data samples and predictions. The processed
        results should be stored in ``self.results``, which will be used to
        compute the metrics when all batches have been processed.

        Args:
            data_batch (Sequence[dict]): A batch of data
                from the dataloader.
            data_samples (Sequence[dict]): A batch of outputs from
                the model, each of which has the following keys:

                - 'id': The id of the sample
                - 'img_id': The image_id of the sample
                - 'pred_instances': The prediction results of instance(s)
        """
        for data_sample in data_samples:
            if 'pred_instances' not in data_sample:
                raise ValueError(
                    '`pred_instances` are required to process the '
                    f'predictions results in {self.__class__.__name__}. ')

            # keypoints.shape: [N, K, 2],
            # N: number of instances, K: number of keypoints
            # for topdown-style output, N is usually 1, while for
            # bottomup-style output, N is the number of instances in the image
            keypoints = data_sample['pred_instances']['keypoints']
            # [N, K], the scores for all keypoints of all instances
            keypoint_scores = data_sample['pred_instances']['keypoint_scores']
            assert keypoint_scores.shape == keypoints.shape[:2]

            # parse prediction results
            pred = dict()
            pred['id'] = data_sample['id']
            pred['img_id'] = data_sample['img_id']
            pred['keypoints'] = keypoints
            pred['keypoint_scores'] = keypoint_scores
            pred['category_id'] = data_sample.get('category_id', 1)

            if 'bbox_scores' in data_sample['pred_instances']:
                # some one-stage models will predict bboxes and scores
                # together with keypoints
                bbox_scores = data_sample['pred_instances']['bbox_scores']
            elif ('bbox_scores' not in data_sample['gt_instances']
                  or len(data_sample['gt_instances']['bbox_scores']) !=
                  len(keypoints)):
                # bottom-up models might output different number of
                # instances from annotation
                bbox_scores = np.ones(len(keypoints))
            else:
                # top-down models use detected bboxes, the scores of which
                # are contained in the gt_instances
                bbox_scores = data_sample['gt_instances']['bbox_scores']
            pred['bbox_scores'] = bbox_scores

            # get area information
            if 'bbox_scales' in data_sample['gt_instances']:
                pred['areas'] = np.prod(
                    data_sample['gt_instances']['bbox_scales'], axis=1)

            # parse gt
            gt = dict()
            if self.coco is None:
                gt['width'] = data_sample['ori_shape'][1]
                gt['height'] = data_sample['ori_shape'][0]
                gt['img_id'] = data_sample['img_id']
                if self.iou_type == 'keypoints_crowd':
                    assert 'crowd_index' in data_sample, \
                        '`crowd_index` is required when `self.iou_type` is ' \
                        '`keypoints_crowd`'
                    gt['crowd_index'] = data_sample['crowd_index']
                assert 'raw_ann_info' in data_sample, \
                    'The row ground truth annotations are required for ' \
                    'evaluation when `ann_file` is not provided'
                anns = data_sample['raw_ann_info']
                gt['raw_ann_info'] = anns if isinstance(anns, list) else [anns]

            # add converted result to the results list
            self.results.append((pred, gt))

    def gt_to_coco_json(self, gt_dicts: Sequence[dict],
                        outfile_prefix: str) -> str:
        """Convert ground truth to coco format json file.

        Args:
            gt_dicts (Sequence[dict]): Ground truth of the dataset. Each dict
                contains the ground truth information about the data sample.
                Required keys of the each `gt_dict` in `gt_dicts`:
                    - `img_id`: image id of the data sample
                    - `width`: original image width
                    - `height`: original image height
                    - `raw_ann_info`: the raw annotation information
                Optional keys:
                    - `crowd_index`: measure the crowding level of an image,
                        defined in CrowdPose dataset
                It is worth mentioning that, in order to compute `CocoMetric`,
                there are some required keys in the `raw_ann_info`:
                    - `id`: the id to distinguish different annotations
                    - `image_id`: the image id of this annotation
                    - `category_id`: the category of the instance.
                    - `bbox`: the object bounding box
                    - `keypoints`: the keypoints cooridinates along with their
                        visibilities. Note that it need to be aligned
                        with the official COCO format, e.g., a list with length
                        N * 3, in which N is the number of keypoints. And each
                        triplet represent the [x, y, visible] of the keypoint.
                    - `iscrowd`: indicating whether the annotation is a crowd.
                        It is useful when matching the detection results to
                        the ground truth.
                There are some optional keys as well:
                    - `area`: it is necessary when `self.use_area` is `True`
                    - `num_keypoints`: it is necessary when `self.iou_type`
                        is set as `keypoints_crowd`.
            outfile_prefix (str): The filename prefix of the json files. If the
                prefix is "somepath/xxx", the json file will be named
                "somepath/xxx.gt.json".
        Returns:
            str: The filename of the json file.
        """
        image_infos = []
        annotations = []
        img_ids = []
        ann_ids = []

        for gt_dict in gt_dicts:
            # filter duplicate image_info
            if gt_dict['img_id'] not in img_ids:
                image_info = dict(
                    id=gt_dict['img_id'],
                    width=gt_dict['width'],
                    height=gt_dict['height'],
                )
                if self.iou_type == 'keypoints_crowd':
                    image_info['crowdIndex'] = gt_dict['crowd_index']

                image_infos.append(image_info)
                img_ids.append(gt_dict['img_id'])

            # filter duplicate annotations
            for ann in gt_dict['raw_ann_info']:
                if ann is None:
                    # during evaluation on bottom-up datasets, some images
                    # do not have instance annotation
                    continue

                annotation = dict(
                    id=ann['id'],
                    image_id=ann['image_id'],
                    category_id=ann['category_id'],
                    bbox=ann['bbox'],
                    keypoints=ann['keypoints'],
                    iscrowd=ann['iscrowd'],
                )
                if self.use_area:
                    assert 'area' in ann, \
                        '`area` is required when `self.use_area` is `True`'
                    annotation['area'] = ann['area']

                if self.iou_type == 'keypoints_crowd':
                    assert 'num_keypoints' in ann, \
                        '`num_keypoints` is required when `self.iou_type` ' \
                        'is `keypoints_crowd`'
                    annotation['num_keypoints'] = ann['num_keypoints']

                annotations.append(annotation)
                ann_ids.append(ann['id'])

        info = dict(
            date_created=str(datetime.datetime.now()),
            description='Coco json file converted by mmpose CocoMetric.')
        coco_json = dict(
            info=info,
            images=image_infos,
            categories=self.dataset_meta['CLASSES'],
            licenses=None,
            annotations=annotations,
        )
        converted_json_path = f'{outfile_prefix}.gt.json'
        dump(coco_json, converted_json_path, sort_keys=True, indent=4)
        return converted_json_path

    def compute_metrics(self, results: list) -> Dict[str, float]:
        """Compute the metrics from processed results.

        Args:
            results (list): The processed results of each batch.

        Returns:
            Dict[str, float]: The computed metrics. The keys are the names of
            the metrics, and the values are corresponding results.
        """
        logger: MMLogger = MMLogger.get_current_instance()

        # split prediction and gt list
        preds, gts = zip(*results)

        tmp_dir = None
        if self.outfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            outfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            outfile_prefix = self.outfile_prefix

        if self.coco is None:
            # use converted gt json file to initialize coco helper
            logger.info('Converting ground truth to coco format...')
            coco_json_path = self.gt_to_coco_json(
                gt_dicts=gts, outfile_prefix=outfile_prefix)
            self.coco = COCO(coco_json_path)

        kpts = defaultdict(list)

        # group the preds by img_id
        for pred in preds:
            img_id = pred['img_id']
            for idx in range(len(pred['keypoints'])):
                instance = {
                    'id': pred['id'],
                    'img_id': pred['img_id'],
                    'category_id': pred['category_id'],
                    'keypoints': pred['keypoints'][idx],
                    'keypoint_scores': pred['keypoint_scores'][idx],
                    'bbox_score': pred['bbox_scores'][idx],
                }

                if 'areas' in pred:
                    instance['area'] = pred['areas'][idx]
                else:
                    # use keypoint to calculate bbox and get area
                    keypoints = pred['keypoints'][idx]
                    area = (
                        np.max(keypoints[:, 0]) - np.min(keypoints[:, 0])) * (
                            np.max(keypoints[:, 1]) - np.min(keypoints[:, 1]))
                    instance['area'] = area

                kpts[img_id].append(instance)

        # sort keypoint results according to id and remove duplicate ones
        kpts = self._sort_and_unique_bboxes(kpts, key='id')

        # score the prediction results according to `score_mode`
        # and perform NMS according to `nms_mode`
        valid_kpts = defaultdict(list)
        num_keypoints = self.dataset_meta['num_keypoints']
        for img_id, instances in kpts.items():
            for instance in instances:
                # concatenate the keypoint coordinates and scores
                instance['keypoints'] = np.concatenate([
                    instance['keypoints'], instance['keypoint_scores'][:, None]
                ],
                                                       axis=-1)
                if self.score_mode == 'bbox':
                    instance['score'] = instance['bbox_score']
                elif self.score_mode == 'keypoint':
                    instance['score'] = np.mean(instance['keypoint_scores'])
                else:
                    bbox_score = instance['bbox_score']
                    if self.score_mode == 'bbox_rle':
                        keypoint_scores = instance['keypoint_scores']
                        instance['score'] = float(bbox_score +
                                                  np.mean(keypoint_scores) +
                                                  np.max(keypoint_scores))

                    else:  # self.score_mode == 'bbox_keypoint':
                        mean_kpt_score = 0
                        valid_num = 0
                        for kpt_idx in range(num_keypoints):
                            kpt_score = instance['keypoint_scores'][kpt_idx]
                            if kpt_score > self.keypoint_score_thr:
                                mean_kpt_score += kpt_score
                                valid_num += 1
                        if valid_num != 0:
                            mean_kpt_score /= valid_num
                        instance['score'] = bbox_score * mean_kpt_score
            # perform nms
            if self.nms_mode == 'none':
                valid_kpts[img_id] = instances
            else:
                nms = oks_nms if self.nms_mode == 'oks_nms' else soft_oks_nms
                keep = nms(
                    instances,
                    self.nms_thr,
                    sigmas=self.dataset_meta['sigmas'])
                valid_kpts[img_id] = [instances[_keep] for _keep in keep]

        # convert results to coco style and dump into a json file
        self.results2json(valid_kpts, outfile_prefix=outfile_prefix)

        # only format the results without doing quantitative evaluation
        if self.format_only:
            logger.info('results are saved in '
                        f'{osp.dirname(outfile_prefix)}')
            return {}

        # evaluation results
        eval_results = OrderedDict()
        logger.info(f'Evaluating {self.__class__.__name__}...')
        info_str = self._do_python_keypoint_eval(outfile_prefix)
        name_value = OrderedDict(info_str)
        eval_results.update(name_value)

        if tmp_dir is not None:
            tmp_dir.cleanup()
        return eval_results

    def results2json(self, keypoints: Dict[int, list],
                     outfile_prefix: str) -> str:
        """Dump the keypoint detection results to a COCO style json file.

        Args:
            keypoints (Dict[int, list]): Keypoint detection results
                of the dataset.
            outfile_prefix (str): The filename prefix of the json files. If the
                prefix is "somepath/xxx", the json files will be named
                "somepath/xxx.keypoints.json",

        Returns:
            str: The json file name of keypoint results.
        """
        # the results with category_id
        cat_results = []

        for _, img_kpts in keypoints.items():
            _keypoints = np.array(
                [img_kpt['keypoints'] for img_kpt in img_kpts])
            num_keypoints = self.dataset_meta['num_keypoints']
            # collect all the person keypoints in current image
            _keypoints = _keypoints.reshape(-1, num_keypoints * 3)

            result = [{
                'image_id': img_kpt['img_id'],
                'category_id': img_kpt['category_id'],
                'keypoints': keypoint.tolist(),
                'score': float(img_kpt['score']),
            } for img_kpt, keypoint in zip(img_kpts, _keypoints)]

            cat_results.extend(result)

        res_file = f'{outfile_prefix}.keypoints.json'
        dump(cat_results, res_file, sort_keys=True, indent=4)

    def _do_python_keypoint_eval(self, outfile_prefix: str) -> list:
        """Do keypoint evaluation using COCOAPI.

        Args:
            outfile_prefix (str): The filename prefix of the json files. If the
                prefix is "somepath/xxx", the json files will be named
                "somepath/xxx.keypoints.json",

        Returns:
            list: a list of tuples. Each tuple contains the evaluation stats
            name and corresponding stats value.
        """
        res_file = f'{outfile_prefix}.keypoints.json'
        coco_det = self.coco.loadRes(res_file)
        sigmas = self.dataset_meta['sigmas']
        coco_eval = COCOeval(self.coco, coco_det, self.iou_type, sigmas,
                             self.use_area)
        coco_eval.params.useSegm = None
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()

        if self.iou_type == 'keypoints_crowd':
            stats_names = [
                'AP', 'AP .5', 'AP .75', 'AR', 'AR .5', 'AR .75', 'AP(E)',
                'AP(M)', 'AP(H)'
            ]
        else:
            stats_names = [
                'AP', 'AP .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5',
                'AR .75', 'AR (M)', 'AR (L)'
            ]

        info_str = list(zip(stats_names, coco_eval.stats))

        return info_str

    def _sort_and_unique_bboxes(self,
                                kpts: Dict[int, list],
                                key: str = 'id') -> Dict[int, list]:
        """Sort keypoint detection results in each image and remove the
        duplicate ones. Usually performed in multi-batch testing.

        Args:
            kpts (Dict[int, list]): keypoint prediction results. The keys are
                '`img_id`' and the values are list that may contain
                keypoints of multiple persons. Each element in the list is a
                dict containing the ``'key'`` field.
                See the argument ``key`` for details.
            key (str): The key name in each person prediction results. The
                corresponding value will be used for sorting the results.
                Default: ``'id'``.

        Returns:
            Dict[int, list]: The sorted keypoint detection results.
        """
        for img_id, persons in kpts.items():
            # deal with bottomup-style output
            if isinstance(kpts[img_id][0][key], Sequence):
                return kpts
            num = len(persons)
            kpts[img_id] = sorted(kpts[img_id], key=lambda x: x[key])
            for i in range(num - 1, 0, -1):
                if kpts[img_id][i][key] == kpts[img_id][i - 1][key]:
                    del kpts[img_id][i]

        return kpts