Spaces:
Runtime error
Runtime error
File size: 16,899 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
# Copyright (c) OpenMMLab. All rights reserved.
import mimetypes
import os
import warnings
from collections import defaultdict
from typing import (Callable, Dict, Generator, Iterable, List, Optional,
Sequence, Union)
import cv2
import mmcv
import mmengine
import numpy as np
import torch.nn as nn
from mmengine.config import Config, ConfigDict
from mmengine.dataset import Compose
from mmengine.fileio import (get_file_backend, isdir, join_path,
list_dir_or_file)
from mmengine.infer.infer import BaseInferencer
from mmengine.runner.checkpoint import _load_checkpoint_to_model
from mmengine.structures import InstanceData
from mmengine.utils import mkdir_or_exist
from mmpose.apis.inference import dataset_meta_from_config
from mmpose.structures import PoseDataSample, split_instances
InstanceList = List[InstanceData]
InputType = Union[str, np.ndarray]
InputsType = Union[InputType, Sequence[InputType]]
PredType = Union[InstanceData, InstanceList]
ImgType = Union[np.ndarray, Sequence[np.ndarray]]
ConfigType = Union[Config, ConfigDict]
ResType = Union[Dict, List[Dict], InstanceData, List[InstanceData]]
class BaseMMPoseInferencer(BaseInferencer):
"""The base class for MMPose inferencers."""
preprocess_kwargs: set = {'bbox_thr', 'nms_thr', 'bboxes'}
forward_kwargs: set = set()
visualize_kwargs: set = {
'return_vis',
'show',
'wait_time',
'draw_bbox',
'radius',
'thickness',
'kpt_thr',
'vis_out_dir',
}
postprocess_kwargs: set = {'pred_out_dir'}
def _load_weights_to_model(self, model: nn.Module,
checkpoint: Optional[dict],
cfg: Optional[ConfigType]) -> None:
"""Loading model weights and meta information from cfg and checkpoint.
Subclasses could override this method to load extra meta information
from ``checkpoint`` and ``cfg`` to model.
Args:
model (nn.Module): Model to load weights and meta information.
checkpoint (dict, optional): The loaded checkpoint.
cfg (Config or ConfigDict, optional): The loaded config.
"""
if checkpoint is not None:
_load_checkpoint_to_model(model, checkpoint)
checkpoint_meta = checkpoint.get('meta', {})
# save the dataset_meta in the model for convenience
if 'dataset_meta' in checkpoint_meta:
# mmpose 1.x
model.dataset_meta = checkpoint_meta['dataset_meta']
else:
warnings.warn(
'dataset_meta are not saved in the checkpoint\'s '
'meta data, load via config.')
model.dataset_meta = dataset_meta_from_config(
cfg, dataset_mode='train')
else:
warnings.warn('Checkpoint is not loaded, and the inference '
'result is calculated by the randomly initialized '
'model!')
model.dataset_meta = dataset_meta_from_config(
cfg, dataset_mode='train')
def _inputs_to_list(self, inputs: InputsType) -> Iterable:
"""Preprocess the inputs to a list.
Preprocess inputs to a list according to its type:
- list or tuple: return inputs
- str:
- Directory path: return all files in the directory
- other cases: return a list containing the string. The string
could be a path to file, a url or other types of string
according to the task.
Args:
inputs (InputsType): Inputs for the inferencer.
Returns:
list: List of input for the :meth:`preprocess`.
"""
self._video_input = False
if isinstance(inputs, str):
backend = get_file_backend(inputs)
if hasattr(backend, 'isdir') and isdir(inputs):
# Backends like HttpsBackend do not implement `isdir`, so only
# those backends that implement `isdir` could accept the
# inputs as a directory
filepath_list = [
join_path(inputs, fname)
for fname in list_dir_or_file(inputs, list_dir=False)
]
inputs = []
for filepath in filepath_list:
input_type = mimetypes.guess_type(filepath)[0].split(
'/')[0]
if input_type == 'image':
inputs.append(filepath)
inputs.sort()
else:
# if inputs is a path to a video file, it will be converted
# to a list containing separated frame filenames
input_type = mimetypes.guess_type(inputs)[0].split('/')[0]
if input_type == 'video':
self._video_input = True
video = mmcv.VideoReader(inputs)
self.video_info = dict(
fps=video.fps,
name=os.path.basename(inputs),
writer=None,
predictions=[])
inputs = video
elif input_type == 'image':
inputs = [inputs]
else:
raise ValueError(f'Expected input to be an image, video, '
f'or folder, but received {inputs} of '
f'type {input_type}.')
elif isinstance(inputs, np.ndarray):
inputs = [inputs]
return inputs
def _get_webcam_inputs(self, inputs: str) -> Generator:
"""Sets up and returns a generator function that reads frames from a
webcam input. The generator function returns a new frame each time it
is iterated over.
Args:
inputs (str): A string describing the webcam input, in the format
"webcam:id".
Returns:
A generator function that yields frames from the webcam input.
Raises:
ValueError: If the inputs string is not in the expected format.
"""
assert getattr(self.visualizer, 'backend', None) == 'opencv', \
'Visualizer must utilize the OpenCV backend in order to ' \
'support webcam inputs.'
# Ensure the inputs string is in the expected format.
inputs = inputs.lower()
assert inputs.startswith('webcam'), f'Expected input to start with ' \
f'"webcam", but got "{inputs}"'
# Parse the camera ID from the inputs string.
inputs_ = inputs.split(':')
if len(inputs_) == 1:
camera_id = 0
elif len(inputs_) == 2 and str.isdigit(inputs_[1]):
camera_id = int(inputs_[1])
else:
raise ValueError(
f'Expected webcam input to have format "webcam:id", '
f'but got "{inputs}"')
# Attempt to open the video capture object.
vcap = cv2.VideoCapture(camera_id)
if not vcap.isOpened():
warnings.warn(f'Cannot open camera (ID={camera_id})')
return []
# Set video input flag and metadata.
self._video_input = True
self.video_info = dict(
fps=10, name='webcam.mp4', writer=None, predictions=[])
def _webcam_reader() -> Generator:
while True:
if cv2.waitKey(5) & 0xFF == 27:
vcap.release()
break
ret_val, frame = vcap.read()
if not ret_val:
break
yield frame
return _webcam_reader()
def _visualization_window_on_close(self, event):
self._window_closing = True
def _init_pipeline(self, cfg: ConfigType) -> Callable:
"""Initialize the test pipeline.
Args:
cfg (ConfigType): model config path or dict
Returns:
A pipeline to handle various input data, such as ``str``,
``np.ndarray``. The returned pipeline will be used to process
a single data.
"""
return Compose(cfg.test_dataloader.dataset.pipeline)
def preprocess(self,
inputs: InputsType,
batch_size: int = 1,
bboxes: Optional[List] = None,
**kwargs):
"""Process the inputs into a model-feedable format.
Args:
inputs (InputsType): Inputs given by user.
batch_size (int): batch size. Defaults to 1.
Yields:
Any: Data processed by the ``pipeline`` and ``collate_fn``.
List[str or np.ndarray]: List of original inputs in the batch
"""
for i, input in enumerate(inputs):
bbox = bboxes[i] if bboxes is not None else []
data_infos = self.preprocess_single(
input, index=i, bboxes=bbox, **kwargs)
# only supports inference with batch size 1
yield self.collate_fn(data_infos), [input]
def visualize(self,
inputs: list,
preds: List[PoseDataSample],
return_vis: bool = False,
show: bool = False,
draw_bbox: bool = False,
wait_time: float = 0,
radius: int = 3,
thickness: int = 1,
kpt_thr: float = 0.3,
vis_out_dir: str = '',
window_name: str = '',
window_close_event_handler: Optional[Callable] = None
) -> List[np.ndarray]:
"""Visualize predictions.
Args:
inputs (list): Inputs preprocessed by :meth:`_inputs_to_list`.
preds (Any): Predictions of the model.
return_vis (bool): Whether to return images with predicted results.
show (bool): Whether to display the image in a popup window.
Defaults to False.
wait_time (float): The interval of show (ms). Defaults to 0
draw_bbox (bool): Whether to draw the bounding boxes.
Defaults to False
radius (int): Keypoint radius for visualization. Defaults to 3
thickness (int): Link thickness for visualization. Defaults to 1
kpt_thr (float): The threshold to visualize the keypoints.
Defaults to 0.3
vis_out_dir (str, optional): Directory to save visualization
results w/o predictions. If left as empty, no file will
be saved. Defaults to ''.
window_name (str, optional): Title of display window.
window_close_event_handler (callable, optional):
Returns:
List[np.ndarray]: Visualization results.
"""
if (not return_vis) and (not show) and (not vis_out_dir):
return
if getattr(self, 'visualizer', None) is None:
raise ValueError('Visualization needs the "visualizer" term'
'defined in the config, but got None.')
self.visualizer.radius = radius
self.visualizer.line_width = thickness
results = []
for single_input, pred in zip(inputs, preds):
if isinstance(single_input, str):
img = mmcv.imread(single_input, channel_order='rgb')
elif isinstance(single_input, np.ndarray):
img = mmcv.bgr2rgb(single_input)
else:
raise ValueError('Unsupported input type: '
f'{type(single_input)}')
img_name = os.path.basename(pred.metainfo['img_path'])
window_name = window_name if window_name else img_name
# since visualization and inference utilize the same process,
# the wait time is reduced when a video input is utilized,
# thereby eliminating the issue of inference getting stuck.
wait_time = 1e-5 if self._video_input else wait_time
visualization = self.visualizer.add_datasample(
window_name,
img,
pred,
draw_gt=False,
draw_bbox=draw_bbox,
draw_heatmap=True,
show=show,
wait_time=wait_time,
kpt_thr=kpt_thr)
results.append(visualization)
if vis_out_dir:
out_img = mmcv.rgb2bgr(visualization)
if self._video_input:
if self.video_info['writer'] is None:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
mkdir_or_exist(vis_out_dir)
out_file = join_path(
vis_out_dir,
os.path.basename(self.video_info['name']))
self.video_info['writer'] = cv2.VideoWriter(
out_file, fourcc, self.video_info['fps'],
(visualization.shape[1], visualization.shape[0]))
self.video_info['writer'].write(out_img)
else:
out_file = join_path(vis_out_dir, img_name)
mmcv.imwrite(out_img, out_file)
if return_vis:
return results
else:
return []
def postprocess(
self,
preds: List[PoseDataSample],
visualization: List[np.ndarray],
return_datasample=False,
pred_out_dir: str = '',
) -> dict:
"""Process the predictions and visualization results from ``forward``
and ``visualize``.
This method should be responsible for the following tasks:
1. Convert datasamples into a json-serializable dict if needed.
2. Pack the predictions and visualization results and return them.
3. Dump or log the predictions.
Args:
preds (List[Dict]): Predictions of the model.
visualization (np.ndarray): Visualized predictions.
return_datasample (bool): Whether to return results as
datasamples. Defaults to False.
pred_out_dir (str): Directory to save the inference results w/o
visualization. If left as empty, no file will be saved.
Defaults to ''.
Returns:
dict: Inference and visualization results with key ``predictions``
and ``visualization``
- ``visualization (Any)``: Returned by :meth:`visualize`
- ``predictions`` (dict or DataSample): Returned by
:meth:`forward` and processed in :meth:`postprocess`.
If ``return_datasample=False``, it usually should be a
json-serializable dict containing only basic data elements such
as strings and numbers.
"""
result_dict = defaultdict(list)
result_dict['visualization'] = visualization
for pred in preds:
if not return_datasample:
# convert datasamples to list of instance predictions
pred = split_instances(pred.pred_instances)
result_dict['predictions'].append(pred)
if pred_out_dir != '':
for pred, data_sample in zip(result_dict['predictions'], preds):
if self._video_input:
self.video_info['predictions'].append(pred)
else:
fname = os.path.splitext(
os.path.basename(
data_sample.metainfo['img_path']))[0] + '.json'
mmengine.dump(
pred, join_path(pred_out_dir, fname), indent=' ')
return result_dict
def _finalize_video_processing(
self,
pred_out_dir: str = '',
):
"""Finalize video processing by releasing the video writer and saving
predictions to a file.
This method should be called after completing the video processing. It
releases the video writer, if it exists, and saves the predictions to a
JSON file if a prediction output directory is provided.
"""
# Release the video writer if it exists
if self.video_info['writer'] is not None:
self.video_info['writer'].release()
# Save predictions
if pred_out_dir:
fname = os.path.splitext(
os.path.basename(self.video_info['name']))[0] + '.json'
predictions = [
dict(frame_id=i, instances=pred)
for i, pred in enumerate(self.video_info['predictions'])
]
mmengine.dump(
predictions, join_path(pred_out_dir, fname), indent=' ')
|