test / modules /layers.py
listen2you003's picture
remove flash attn
50550c9
# Modified from Flux
#
# Copyright 2024 Black Forest Labs
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math # noqa: I001
from dataclasses import dataclass
from functools import partial
import torch
import torch.nn.functional as F
from einops import rearrange
# from liger_kernel.ops.rms_norm import LigerRMSNormFunction
from torch import Tensor, nn
try:
import flash_attn
from flash_attn.flash_attn_interface import (
_flash_attn_forward,
flash_attn_varlen_func,
)
except ImportError:
flash_attn = None
flash_attn_varlen_func = None
_flash_attn_forward = None
MEMORY_LAYOUT = {
"flash": (
lambda x: x.view(x.shape[0] * x.shape[1], *x.shape[2:]),
lambda x: x,
),
"torch": (
lambda x: x.transpose(1, 2),
lambda x: x.transpose(1, 2),
),
"vanilla": (
lambda x: x.transpose(1, 2),
lambda x: x.transpose(1, 2),
),
}
def attention(
q,
k,
v,
mode="torch",
drop_rate=0,
attn_mask=None,
causal=False,
cu_seqlens_q=None,
cu_seqlens_kv=None,
max_seqlen_q=None,
max_seqlen_kv=None,
batch_size=1,
):
"""
Perform QKV self attention.
Args:
q (torch.Tensor): Query tensor with shape [b, s, a, d], where a is the number of heads.
k (torch.Tensor): Key tensor with shape [b, s1, a, d]
v (torch.Tensor): Value tensor with shape [b, s1, a, d]
mode (str): Attention mode. Choose from 'self_flash', 'cross_flash', 'torch', and 'vanilla'.
drop_rate (float): Dropout rate in attention map. (default: 0)
attn_mask (torch.Tensor): Attention mask with shape [b, s1] (cross_attn), or [b, a, s, s1] (torch or vanilla).
(default: None)
causal (bool): Whether to use causal attention. (default: False)
cu_seqlens_q (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
used to index into q.
cu_seqlens_kv (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
used to index into kv.
max_seqlen_q (int): The maximum sequence length in the batch of q.
max_seqlen_kv (int): The maximum sequence length in the batch of k and v.
Returns:
torch.Tensor: Output tensor after self attention with shape [b, s, ad]
"""
pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode]
q = pre_attn_layout(q)
k = pre_attn_layout(k)
v = pre_attn_layout(v)
if mode == "torch":
if attn_mask is not None and attn_mask.dtype != torch.bool:
attn_mask = attn_mask.to(q.dtype)
x = F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal
)
elif mode == "flash":
assert flash_attn_varlen_func is not None
x: torch.Tensor = flash_attn_varlen_func(
q,
k,
v,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
) # type: ignore
# x with shape [(bxs), a, d]
x = x.view(batch_size, max_seqlen_q, x.shape[-2], x.shape[-1]) # type: ignore # reshape x to [b, s, a, d]
elif mode == "vanilla":
scale_factor = 1 / math.sqrt(q.size(-1))
b, a, s, _ = q.shape
s1 = k.size(2)
attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device)
if causal:
# Only applied to self attention
assert attn_mask is None, (
"Causal mask and attn_mask cannot be used together"
)
temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril(
diagonal=0
)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(q.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
# TODO: Maybe force q and k to be float32 to avoid numerical overflow
attn = (q @ k.transpose(-2, -1)) * scale_factor
attn += attn_bias
attn = attn.softmax(dim=-1)
attn = torch.dropout(attn, p=drop_rate, train=True)
x = attn @ v
else:
raise NotImplementedError(f"Unsupported attention mode: {mode}")
x = post_attn_layout(x)
b, s, a, d = x.shape
out = x.reshape(b, s, -1)
return out
def apply_gate(x, gate=None, tanh=False):
"""AI is creating summary for apply_gate
Args:
x (torch.Tensor): input tensor.
gate (torch.Tensor, optional): gate tensor. Defaults to None.
tanh (bool, optional): whether to use tanh function. Defaults to False.
Returns:
torch.Tensor: the output tensor after apply gate.
"""
if gate is None:
return x
if tanh:
return x * gate.unsqueeze(1).tanh()
else:
return x * gate.unsqueeze(1)
class MLP(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_channels,
hidden_channels=None,
out_features=None,
act_layer=nn.GELU,
norm_layer=None,
bias=True,
drop=0.0,
use_conv=False,
device=None,
dtype=None,
):
super().__init__()
out_features = out_features or in_channels
hidden_channels = hidden_channels or in_channels
bias = (bias, bias)
drop_probs = (drop, drop)
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
self.fc1 = linear_layer(
in_channels, hidden_channels, bias=bias[0], device=device, dtype=dtype
)
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.norm = (
norm_layer(hidden_channels, device=device, dtype=dtype)
if norm_layer is not None
else nn.Identity()
)
self.fc2 = linear_layer(
hidden_channels, out_features, bias=bias[1], device=device, dtype=dtype
)
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.norm(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class TextProjection(nn.Module):
"""
Projects text embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None):
factory_kwargs = {"dtype": dtype, "device": device}
super().__init__()
self.linear_1 = nn.Linear(
in_features=in_channels,
out_features=hidden_size,
bias=True,
**factory_kwargs,
)
self.act_1 = act_layer()
self.linear_2 = nn.Linear(
in_features=hidden_size,
out_features=hidden_size,
bias=True,
**factory_kwargs,
)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(
self,
hidden_size,
act_layer,
frequency_embedding_size=256,
max_period=10000,
out_size=None,
dtype=None,
device=None,
):
factory_kwargs = {"dtype": dtype, "device": device}
super().__init__()
self.frequency_embedding_size = frequency_embedding_size
self.max_period = max_period
if out_size is None:
out_size = hidden_size
self.mlp = nn.Sequential(
nn.Linear(
frequency_embedding_size, hidden_size, bias=True, **factory_kwargs
),
act_layer(),
nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs),
)
nn.init.normal_(self.mlp[0].weight, std=0.02) # type: ignore
nn.init.normal_(self.mlp[2].weight, std=0.02) # type: ignore
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
Args:
t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional.
dim (int): the dimension of the output.
max_period (int): controls the minimum frequency of the embeddings.
Returns:
embedding (torch.Tensor): An (N, D) Tensor of positional embeddings.
.. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(
t, self.frequency_embedding_size, self.max_period
).type(self.mlp[0].weight.dtype) # type: ignore
t_emb = self.mlp(t_freq)
return t_emb
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
def rope(pos, dim: int, theta: int):
assert dim % 2 == 0
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack(
[torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1
)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
def attention_after_rope(q, k, v, pe):
q, k = apply_rope(q, k, pe)
from .attention import attention
x = attention(q, k, v, mode="torch")
return x
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True)
def apply_rope(xq, xk, freqs_cis):
# 将 num_heads 和 seq_len 的维度交换回原函数的处理顺序
xq = xq.transpose(1, 2) # [batch, num_heads, seq_len, head_dim]
xk = xk.transpose(1, 2)
# 将 head_dim 拆分为复数部分(实部和虚部)
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
# 应用旋转位置编码(复数乘法)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
# 恢复张量形状并转置回目标维度顺序
xq_out = xq_out.reshape(*xq.shape).type_as(xq).transpose(1, 2)
xk_out = xk_out.reshape(*xk.shape).type_as(xk).transpose(1, 2)
return xq_out, xk_out
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True)
def scale_add_residual(
x: torch.Tensor, scale: torch.Tensor, residual: torch.Tensor
) -> torch.Tensor:
return x * scale + residual
@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True)
def layernorm_and_scale_shift(
x: torch.Tensor, scale: torch.Tensor, shift: torch.Tensor
) -> torch.Tensor:
return torch.nn.functional.layer_norm(x, (x.size(-1),)) * (scale + 1) + shift
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention_after_rope(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
# @staticmethod
# def rms_norm_fast(x, weight, eps):
# return LigerRMSNormFunction.apply(
# x,
# weight,
# eps,
# 0.0,
# "gemma",
# True,
# )
@staticmethod
def rms_norm(x, weight, eps):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
return (x * rrms).to(dtype=x_dtype) * weight
def forward(self, x: Tensor):
# return self.rms_norm_fast(x, self.scale, 1e-6)
return self.rms_norm(x, self.scale, 1e-6)
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(
self.multiplier, dim=-1
)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(
self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False
):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias
)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias
)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(
self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor
) -> tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(
img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads
)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(
txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads
)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=1)
k = torch.cat((txt_k, img_k), dim=1)
v = torch.cat((txt_v, img_v), dim=1)
attn = attention_after_rope(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img_mlp = self.img_mlp(
(1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift
)
img = scale_add_residual(img_mlp, img_mod2.gate, img)
# calculate the txt bloks
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt_mlp = self.txt_mlp(
(1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift
)
txt = scale_add_residual(txt_mlp, txt_mod2.gate, txt)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod, _ = self.modulation(vec)
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
qkv, mlp = torch.split(
self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1
)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
# compute attention
attn = attention_after_rope(q, k, v, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
return scale_add_residual(output, mod.gate, x)
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(
hidden_size, patch_size * patch_size * out_channels, bias=True
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x