Spaces:
Running
Running
Commit
·
407a5fa
1
Parent(s):
454e091
Add logging and error handling to app.py; update Gradio interface and fix JSON schema issue
Browse files- app.py +145 -96
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,6 +1,30 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
@@ -9,18 +33,25 @@ import torch
|
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
|
|
|
|
|
|
|
12 |
if torch.cuda.is_available():
|
13 |
torch_dtype = torch.float16
|
14 |
else:
|
15 |
torch_dtype = torch.float32
|
16 |
|
17 |
-
|
18 |
-
pipe =
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
-
|
24 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
prompt,
|
@@ -33,23 +64,31 @@ def infer(
|
|
33 |
num_inference_steps,
|
34 |
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
examples = [
|
55 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
@@ -64,91 +103,101 @@ css = """
|
|
64 |
}
|
65 |
"""
|
66 |
|
67 |
-
|
68 |
-
with gr.
|
69 |
-
gr.
|
70 |
-
|
71 |
-
with gr.Row():
|
72 |
-
prompt = gr.Text(
|
73 |
-
label="Prompt",
|
74 |
-
show_label=False,
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
-
|
80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
-
|
82 |
-
result = gr.Image(label="Result", show_label=False)
|
83 |
-
|
84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
negative_prompt = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
-
|
92 |
-
seed = gr.Slider(
|
93 |
-
label="Seed",
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
-
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
|
102 |
with gr.Row():
|
103 |
-
|
104 |
-
label="
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
)
|
110 |
|
111 |
-
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
126 |
)
|
127 |
|
128 |
-
|
129 |
-
label="
|
130 |
-
minimum=
|
131 |
-
maximum=
|
132 |
step=1,
|
133 |
-
value=
|
134 |
)
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import logging
|
5 |
+
import sys
|
6 |
+
|
7 |
+
# 设置日志记录
|
8 |
+
logging.basicConfig(level=logging.INFO,
|
9 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
10 |
+
stream=sys.stdout)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
# 修复 Gradio JSON Schema 错误
|
14 |
+
try:
|
15 |
+
import gradio_client.utils
|
16 |
+
# 添加对布尔值的检查
|
17 |
+
original_get_type = gradio_client.utils.get_type
|
18 |
+
def patched_get_type(schema):
|
19 |
+
if isinstance(schema, bool):
|
20 |
+
return "bool"
|
21 |
+
if not isinstance(schema, dict):
|
22 |
+
return "any"
|
23 |
+
return original_get_type(schema)
|
24 |
+
gradio_client.utils.get_type = patched_get_type
|
25 |
+
logger.info("Successfully patched Gradio JSON schema processing")
|
26 |
+
except Exception as e:
|
27 |
+
logger.error(f"Failed to patch Gradio: {str(e)}")
|
28 |
|
29 |
# import spaces #[uncomment to use ZeroGPU]
|
30 |
from diffusers import DiffusionPipeline
|
|
|
33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
35 |
|
36 |
+
logger.info(f"Using device: {device}")
|
37 |
+
logger.info(f"Loading model: {model_repo_id}")
|
38 |
+
|
39 |
if torch.cuda.is_available():
|
40 |
torch_dtype = torch.float16
|
41 |
else:
|
42 |
torch_dtype = torch.float32
|
43 |
|
44 |
+
try:
|
45 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
46 |
+
pipe = pipe.to(device)
|
47 |
+
logger.info("Model loaded successfully")
|
48 |
+
except Exception as e:
|
49 |
+
logger.error(f"Error loading model: {str(e)}")
|
50 |
+
raise
|
51 |
|
52 |
MAX_SEED = np.iinfo(np.int32).max
|
53 |
MAX_IMAGE_SIZE = 1024
|
54 |
|
|
|
55 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
56 |
def infer(
|
57 |
prompt,
|
|
|
64 |
num_inference_steps,
|
65 |
progress=gr.Progress(track_tqdm=True),
|
66 |
):
|
67 |
+
try:
|
68 |
+
logger.info(f"Processing prompt: {prompt}")
|
69 |
+
|
70 |
+
if randomize_seed:
|
71 |
+
seed = random.randint(0, MAX_SEED)
|
72 |
+
|
73 |
+
logger.info(f"Using seed: {seed}, width: {width}, height: {height}")
|
74 |
+
|
75 |
+
generator = torch.Generator().manual_seed(seed)
|
76 |
+
|
77 |
+
image = pipe(
|
78 |
+
prompt=prompt,
|
79 |
+
negative_prompt=negative_prompt,
|
80 |
+
guidance_scale=guidance_scale,
|
81 |
+
num_inference_steps=num_inference_steps,
|
82 |
+
width=width,
|
83 |
+
height=height,
|
84 |
+
generator=generator,
|
85 |
+
).images[0]
|
86 |
+
|
87 |
+
logger.info("Image generation successful")
|
88 |
+
return image, seed
|
89 |
+
except Exception as e:
|
90 |
+
logger.error(f"Error in inference: {str(e)}")
|
91 |
+
raise gr.Error(f"Error generating image: {str(e)}")
|
92 |
|
93 |
examples = [
|
94 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
|
|
103 |
}
|
104 |
"""
|
105 |
|
106 |
+
try:
|
107 |
+
with gr.Blocks(css=css) as demo:
|
108 |
+
with gr.Column(elem_id="col-container"):
|
109 |
+
gr.Markdown(" # Text-to-Image Gradio Template")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
with gr.Row():
|
112 |
+
prompt = gr.Text(
|
113 |
+
label="Prompt",
|
114 |
+
show_label=False,
|
115 |
+
max_lines=1,
|
116 |
+
placeholder="Enter your prompt",
|
117 |
+
container=False,
|
118 |
)
|
119 |
|
120 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
result = gr.Image(label="Result", show_label=False)
|
123 |
+
|
124 |
+
with gr.Accordion("Advanced Settings", open=False):
|
125 |
+
negative_prompt = gr.Text(
|
126 |
+
label="Negative prompt",
|
127 |
+
max_lines=1,
|
128 |
+
placeholder="Enter a negative prompt",
|
129 |
+
visible=True, # 改为可见
|
130 |
)
|
131 |
|
132 |
+
seed = gr.Slider(
|
133 |
+
label="Seed",
|
134 |
+
minimum=0,
|
135 |
+
maximum=MAX_SEED,
|
136 |
step=1,
|
137 |
+
value=0,
|
138 |
)
|
139 |
|
140 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
141 |
+
|
142 |
+
with gr.Row():
|
143 |
+
width = gr.Slider(
|
144 |
+
label="Width",
|
145 |
+
minimum=256,
|
146 |
+
maximum=MAX_IMAGE_SIZE,
|
147 |
+
step=32,
|
148 |
+
value=1024,
|
149 |
+
)
|
150 |
+
|
151 |
+
height = gr.Slider(
|
152 |
+
label="Height",
|
153 |
+
minimum=256,
|
154 |
+
maximum=MAX_IMAGE_SIZE,
|
155 |
+
step=32,
|
156 |
+
value=1024,
|
157 |
+
)
|
158 |
+
|
159 |
+
with gr.Row():
|
160 |
+
guidance_scale = gr.Slider(
|
161 |
+
label="Guidance scale",
|
162 |
+
minimum=0.0,
|
163 |
+
maximum=10.0,
|
164 |
+
step=0.1,
|
165 |
+
value=0.0,
|
166 |
+
)
|
167 |
+
|
168 |
+
num_inference_steps = gr.Slider(
|
169 |
+
label="Number of inference steps",
|
170 |
+
minimum=1,
|
171 |
+
maximum=50,
|
172 |
+
step=1,
|
173 |
+
value=2,
|
174 |
+
)
|
175 |
+
|
176 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
177 |
+
gr.on(
|
178 |
+
triggers=[run_button.click, prompt.submit],
|
179 |
+
fn=infer,
|
180 |
+
inputs=[
|
181 |
+
prompt,
|
182 |
+
negative_prompt,
|
183 |
+
seed,
|
184 |
+
randomize_seed,
|
185 |
+
width,
|
186 |
+
height,
|
187 |
+
guidance_scale,
|
188 |
+
num_inference_steps,
|
189 |
+
],
|
190 |
+
outputs=[result, seed],
|
191 |
+
)
|
192 |
+
|
193 |
+
logger.info("Gradio interface created successfully")
|
194 |
+
except Exception as e:
|
195 |
+
logger.error(f"Error creating Gradio interface: {str(e)}")
|
196 |
+
raise
|
197 |
|
198 |
if __name__ == "__main__":
|
199 |
+
try:
|
200 |
+
logger.info("Starting Gradio app")
|
201 |
+
demo.launch()
|
202 |
+
except Exception as e:
|
203 |
+
logger.error(f"Error launching app: {str(e)}")
|
requirements.txt
CHANGED
@@ -4,4 +4,4 @@ invisible_watermark
|
|
4 |
torch
|
5 |
transformers
|
6 |
xformers
|
7 |
-
gradio==3.
|
|
|
4 |
torch
|
5 |
transformers
|
6 |
xformers
|
7 |
+
gradio==3.45.0
|