framepack-i2v / app.py
lisonallen's picture
修复make_custom_css函数定义顺序,解决函数未定义错误
ffb7037
raw
history blame
58.7 kB
from diffusers_helper.hf_login import login
import os
import threading
import time
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import json
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
# 添加中英双语翻译字典
translations = {
"en": {
"title": "FramePack - Image to Video Generation",
"upload_image": "Upload Image",
"prompt": "Prompt",
"quick_prompts": "Quick Prompts",
"start_generation": "Generate",
"stop_generation": "Stop",
"use_teacache": "Use TeaCache",
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
"negative_prompt": "Negative Prompt",
"seed": "Seed",
"video_length": "Video Length (seconds)",
"latent_window": "Latent Window Size",
"steps": "Inference Steps",
"steps_info": "Changing this value is not recommended.",
"cfg_scale": "CFG Scale",
"distilled_cfg": "Distilled CFG Scale",
"distilled_cfg_info": "Changing this value is not recommended.",
"cfg_rescale": "CFG Rescale",
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
"next_latents": "Next Latents",
"generated_video": "Generated Video",
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
"error_message": "Error",
"processing_error": "Processing error",
"network_error": "Network connection is unstable, model download timed out. Please try again later.",
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
"partial_video": "Processing error, but partial video has been generated",
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
},
"zh": {
"title": "FramePack - 图像到视频生成",
"upload_image": "上传图像",
"prompt": "提示词",
"quick_prompts": "快速提示词列表",
"start_generation": "开始生成",
"stop_generation": "结束生成",
"use_teacache": "使用TeaCache",
"teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。",
"negative_prompt": "负面提示词",
"seed": "随机种子",
"video_length": "视频长度(秒)",
"latent_window": "潜在窗口大小",
"steps": "推理步数",
"steps_info": "不建议修改此值。",
"cfg_scale": "CFG Scale",
"distilled_cfg": "蒸馏CFG比例",
"distilled_cfg_info": "不建议修改此值。",
"cfg_rescale": "CFG重缩放",
"gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)",
"gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。",
"next_latents": "下一批潜变量",
"generated_video": "生成的视频",
"sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。",
"error_message": "错误信息",
"processing_error": "处理过程出错",
"network_error": "网络连接不稳定,模型下载超时。请稍后再试。",
"memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。",
"model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。",
"partial_video": "处理过程中出现错误,但已生成部分视频",
"processing_interrupt": "处理过程中断,但已生成部分视频"
}
}
# 语言切换功能
def get_translation(key, lang="en"):
if lang in translations and key in translations[lang]:
return translations[lang][key]
# 默认返回英文
return translations["en"].get(key, key)
# 默认语言设置
current_language = "en"
# 切换语言函数
def switch_language():
global current_language
current_language = "zh" if current_language == "en" else "en"
return current_language
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math
# 检查是否在Hugging Face Space环境中
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
# 如果在Hugging Face Space中,导入spaces模块
if IN_HF_SPACE:
try:
import spaces
print("在Hugging Face Space环境中运行,已导入spaces模块")
except ImportError:
print("未能导入spaces模块,可能不在Hugging Face Space环境中")
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
# 在Spaces环境中,我们延迟所有CUDA操作
if not IN_HF_SPACE:
# 仅在非Spaces环境中获取CUDA内存
try:
if torch.cuda.is_available():
free_mem_gb = get_cuda_free_memory_gb(gpu)
print(f'Free VRAM {free_mem_gb} GB')
else:
free_mem_gb = 6.0 # 默认值
print("CUDA不可用,使用默认的内存设置")
except Exception as e:
free_mem_gb = 6.0 # 默认值
print(f"获取CUDA内存时出错: {e},使用默认的内存设置")
high_vram = free_mem_gb > 60
print(f'High-VRAM Mode: {high_vram}')
else:
# 在Spaces环境中使用默认值
print("在Spaces环境中使用默认内存设置")
free_mem_gb = 60.0 # 默认在Spaces中使用较高的值
high_vram = True
print(f'High-VRAM Mode: {high_vram}')
# 使用models变量存储全局模型引用
models = {}
# 使用加载模型的函数
def load_models():
global models
print("开始加载模型...")
# 加载模型
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
if torch.cuda.is_available():
if not high_vram:
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
transformer.to(gpu)
# 保存到全局变量
models = {
'text_encoder': text_encoder,
'text_encoder_2': text_encoder_2,
'tokenizer': tokenizer,
'tokenizer_2': tokenizer_2,
'vae': vae,
'feature_extractor': feature_extractor,
'image_encoder': image_encoder,
'transformer': transformer
}
return models
# 使用Hugging Face Spaces GPU装饰器
if IN_HF_SPACE and 'spaces' in globals():
@spaces.GPU
def initialize_models():
"""在@spaces.GPU装饰器内初始化模型"""
return load_models()
# 以下函数内部会延迟获取模型
def get_models():
"""获取模型,如果尚未加载则加载模型"""
global models
# 添加模型加载锁,防止并发加载
model_loading_key = "__model_loading__"
if not models:
# 检查是否正在加载模型
if model_loading_key in globals():
print("模型正在加载中,等待...")
# 等待模型加载完成
import time
while not models and model_loading_key in globals():
time.sleep(0.5)
return models
try:
# 设置加载标记
globals()[model_loading_key] = True
if IN_HF_SPACE and 'spaces' in globals():
print("使用@spaces.GPU装饰器加载模型")
models = initialize_models()
else:
print("直接加载模型")
load_models()
finally:
# 无论成功与否,都移除加载标记
if model_loading_key in globals():
del globals()[model_loading_key]
return models
stream = AsyncStream()
@torch.no_grad()
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
# 获取模型
models = get_models()
text_encoder = models['text_encoder']
text_encoder_2 = models['text_encoder_2']
tokenizer = models['tokenizer']
tokenizer_2 = models['tokenizer_2']
vae = models['vae']
feature_extractor = models['feature_extractor']
image_encoder = models['image_encoder']
transformer = models['transformer']
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
last_output_filename = None
history_pixels = None
history_latents = None
total_generated_latent_frames = 0
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
# Clean GPU
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
# Text encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
load_model_as_complete(text_encoder_2, target_device=gpu)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# Processing input image
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
H, W, C = input_image.shape
height, width = find_nearest_bucket(H, W, resolution=640)
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
# VAE encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
if not high_vram:
load_model_as_complete(vae, target_device=gpu)
start_latent = vae_encode(input_image_pt, vae)
# CLIP Vision
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# Dtype
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
# Sampling
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
num_frames = latent_window_size * 4 - 3
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
history_pixels = None
total_generated_latent_frames = 0
latent_paddings = reversed(range(total_latent_sections))
if total_latent_sections > 4:
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
# items looks better than expanding it when total_latent_sections > 4
# One can try to remove below trick and just
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
for latent_padding in latent_paddings:
is_last_section = latent_padding == 0
latent_padding_size = latent_padding * latent_window_size
if stream.input_queue.top() == 'end':
# 确保在结束时保存当前的视频
if history_pixels is not None and total_generated_latent_frames > 0:
try:
output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
stream.output_queue.push(('file', output_filename))
except Exception as e:
print(f"保存最终视频时出错: {e}")
stream.output_queue.push(('end', None))
return
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latents_pre = start_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
if not high_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
return
try:
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=num_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
# shift=3.0,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
except Exception as e:
print(f"采样过程中出错: {e}")
traceback.print_exc()
# 如果已经有生成的视频,返回最后生成的视频
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
stream.output_queue.push(('end', None))
return
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
try:
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
if not high_vram:
unload_complete_models()
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
last_output_filename = output_filename
stream.output_queue.push(('file', output_filename))
except Exception as e:
print(f"视频解码或保存过程中出错: {e}")
traceback.print_exc()
# 如果已经有生成的视频,返回最后生成的视频
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
# 尝试继续下一次迭代
continue
if is_last_section:
break
except Exception as e:
print(f"处理过程中出现错误: {e}")
traceback.print_exc()
if not high_vram:
try:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
except Exception:
pass
# 如果已经有生成的视频,返回最后生成的视频
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
# 确保总是返回end信号
stream.output_queue.push(('end', None))
return
# 使用Hugging Face Spaces GPU装饰器处理进程函数
if IN_HF_SPACE and 'spaces' in globals():
@spaces.GPU
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
global stream
assert input_image is not None, 'No input image!'
# 初始化UI状态
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
try:
stream = AsyncStream()
# 异步启动worker
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
output_filename = None
prev_output_filename = None
# 持续检查worker的输出
while True:
try:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
prev_output_filename = output_filename
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
if flag == 'end':
# 如果有最后的视频文件,确保返回
if output_filename is None and prev_output_filename is not None:
output_filename = prev_output_filename
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"处理输出时出错: {e}")
# 检查是否长时间没有更新
current_time = time.time()
if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了
print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新")
# 如果有部分生成的视频,返回
if prev_output_filename:
# 创建双语部分视频生成消息
partial_video_msg = f"""
<div id="partial-video-container">
<div class="msg-en" data-lang="en">Processing error, but partial video has been generated</div>
<div class="msg-zh" data-lang="zh">处理过程中出现错误,但已生成部分视频</div>
</div>
<script>
// 根据当前语言显示相应的消息
(function() {{
const container = document.getElementById('partial-video-container');
if (container) {{
const currentLang = window.currentLang || 'en'; // 默认英语
const msgs = container.querySelectorAll('[data-lang]');
msgs.forEach(msg => {{
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none';
}});
}}
}})();
</script>
"""
yield prev_output_filename, gr.update(visible=False), gr.update(), partial_video_msg, gr.update(interactive=True), gr.update(interactive=False)
else:
# 创建双语错误消息
error_msg = str(e)
en_msg = f"Processing error: {error_msg}"
zh_msg = f"处理过程中出现错误: {error_msg}"
error_html = f"""
<div id="error-msg-container">
<div class="error-msg-en" data-lang="en">{en_msg}</div>
<div class="error-msg-zh" data-lang="zh">{zh_msg}</div>
</div>
<script>
// 根据当前语言显示相应的错误消息
(function() {{
const errorContainer = document.getElementById('error-msg-container');
if (errorContainer) {{
const currentLang = window.currentLang || 'en'; // 默认英语
const errMsgs = errorContainer.querySelectorAll('[data-lang]');
errMsgs.forEach(msg => {{
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none';
}});
}}
}})();
</script>
"""
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"启动处理时出错: {e}")
traceback.print_exc()
error_msg = str(e)
user_friendly_msg = f'处理过程出错: {error_msg}'
# 提供更友好的中英文双语错误信息
en_msg = ""
zh_msg = ""
if "模型下载超时" in error_msg or "网络连接不稳定" in error_msg or "ReadTimeoutError" in error_msg or "ConnectionError" in error_msg:
en_msg = "Network connection is unstable, model download timed out. Please try again later."
zh_msg = "网络连接不稳定,模型下载超时。请稍后再试。"
elif "GPU内存不足" in error_msg or "CUDA out of memory" in error_msg or "OutOfMemoryError" in error_msg:
en_msg = "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length."
zh_msg = "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。"
elif "无法加载模型" in error_msg:
en_msg = "Failed to load model, possibly due to network issues or high server load. Please try again later."
zh_msg = "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。"
else:
en_msg = f"Processing error: {error_msg}"
zh_msg = f"处理过程出错: {error_msg}"
# 创建双语错误消息HTML
bilingual_error = f"""
<div id="error-container">
<div class="error-msg-en" data-lang="en">{en_msg}</div>
<div class="error-msg-zh" data-lang="zh">{zh_msg}</div>
</div>
<script>
// 根据当前语言显示相应的错误消息
(function() {{
const errorContainer = document.getElementById('error-container');
if (errorContainer) {{
const currentLang = window.currentLang || 'en'; // 默认英语
const errMsgs = errorContainer.querySelectorAll('[data-lang]');
errMsgs.forEach(msg => {{
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none';
}});
}}
}})();
</script>
"""
yield None, gr.update(visible=False), gr.update(), bilingual_error, gr.update(interactive=True), gr.update(interactive=False)
process = process_with_gpu
else:
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
global stream
assert input_image is not None, 'No input image!'
# 初始化UI状态
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
try:
stream = AsyncStream()
# 异步启动worker
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
output_filename = None
prev_output_filename = None
# 持续检查worker的输出
while True:
try:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
prev_output_filename = output_filename
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
if flag == 'end':
# 如果有最后的视频文件,确保返回
if output_filename is None and prev_output_filename is not None:
output_filename = prev_output_filename
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"处理输出时出错: {e}")
# 检查是否长时间没有更新
current_time = time.time()
if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了
print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新")
# 如果有部分生成的视频,返回
if prev_output_filename:
# 创建中断消息的双语支持
interrupt_msg = f"""
<div id="interrupt-container">
<div class="msg-en" data-lang="en">Processing was interrupted, but partial video has been generated</div>
<div class="msg-zh" data-lang="zh">处理过程中断,但已生成部分视频</div>
</div>
<script>
// 根据当前语言显示相应的消息
(function() {{
const container = document.getElementById('interrupt-container');
if (container) {{
const currentLang = window.currentLang || 'en'; // 默认英语
const msgs = container.querySelectorAll('[data-lang]');
msgs.forEach(msg => {{
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none';
}});
}}
}})();
</script>
"""
yield prev_output_filename, gr.update(visible=False), gr.update(), interrupt_msg, gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"启动处理时出错: {e}")
traceback.print_exc()
error_msg = str(e)
user_friendly_msg = f'处理过程出错: {error_msg}'
# 提供更友好的中英文双语错误信息
en_msg = ""
zh_msg = ""
if "模型下载超时" in error_msg or "网络连接不稳定" in error_msg or "ReadTimeoutError" in error_msg or "ConnectionError" in error_msg:
en_msg = "Network connection is unstable, model download timed out. Please try again later."
zh_msg = "网络连接不稳定,模型下载超时。请稍后再试。"
elif "GPU内存不足" in error_msg or "CUDA out of memory" in error_msg or "OutOfMemoryError" in error_msg:
en_msg = "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length."
zh_msg = "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。"
elif "无法加载模型" in error_msg:
en_msg = "Failed to load model, possibly due to network issues or high server load. Please try again later."
zh_msg = "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。"
else:
en_msg = f"Processing error: {error_msg}"
zh_msg = f"处理过程出错: {error_msg}"
# 创建双语错误消息HTML
bilingual_error = f"""
<div id="error-container">
<div class="error-msg-en" data-lang="en">{en_msg}</div>
<div class="error-msg-zh" data-lang="zh">{zh_msg}</div>
</div>
<script>
// 根据当前语言显示相应的错误消息
(function() {{
const errorContainer = document.getElementById('error-container');
if (errorContainer) {{
const currentLang = window.currentLang || 'en'; // 默认英语
const errMsgs = errorContainer.querySelectorAll('[data-lang]');
errMsgs.forEach(msg => {{
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none';
}});
}}
}})();
</script>
"""
yield None, gr.update(visible=False), gr.update(), bilingual_error, gr.update(interactive=True), gr.update(interactive=False)
def end_process():
stream.input_queue.push('end')
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]
# 创建一个自定义CSS,增加响应式布局支持
def make_custom_css():
progress_bar_css = make_progress_bar_css()
responsive_css = """
/* 基础响应式设置 */
#app-container {
max-width: 100%;
margin: 0 auto;
}
/* 语言切换按钮样式 */
#language-toggle {
position: fixed;
top: 10px;
right: 10px;
z-index: 1000;
background-color: rgba(0, 0, 0, 0.7);
color: white;
border: none;
border-radius: 4px;
padding: 5px 10px;
cursor: pointer;
font-size: 14px;
}
/* 页面标题样式 */
h1 {
font-size: 2rem;
text-align: center;
margin-bottom: 1rem;
}
/* 按钮样式 */
.start-btn, .stop-btn {
min-height: 45px;
font-size: 1rem;
}
/* 移动设备样式 - 小屏幕 */
@media (max-width: 768px) {
h1 {
font-size: 1.5rem;
margin-bottom: 0.5rem;
}
/* 单列布局 */
.mobile-full-width {
flex-direction: column !important;
}
.mobile-full-width > .gr-block {
min-width: 100% !important;
flex-grow: 1;
}
/* 调整视频大小 */
.video-container {
height: auto !important;
}
/* 调整按钮大小 */
.button-container button {
min-height: 50px;
font-size: 1rem;
touch-action: manipulation;
}
/* 调整滑块 */
.slider-container input[type="range"] {
height: 30px;
}
}
/* 平板设备样式 */
@media (min-width: 769px) and (max-width: 1024px) {
.tablet-adjust {
width: 48% !important;
}
}
/* 黑暗模式支持 */
@media (prefers-color-scheme: dark) {
.dark-mode-text {
color: #f0f0f0;
}
.dark-mode-bg {
background-color: #2a2a2a;
}
}
/* 增强可访问性 */
button, input, select, textarea {
font-size: 16px; /* 防止iOS缩放 */
}
/* 触摸优化 */
button, .interactive-element {
min-height: 44px;
min-width: 44px;
}
/* 提高对比度 */
.high-contrast {
color: #fff;
background-color: #000;
}
/* 进度条样式增强 */
.progress-container {
margin-top: 10px;
margin-bottom: 10px;
}
/* 错误消息样式 */
#error-message {
color: #ff4444;
font-weight: bold;
padding: 10px;
border-radius: 4px;
margin-top: 10px;
background-color: rgba(255, 0, 0, 0.1);
}
"""
# 合并CSS
combined_css = progress_bar_css + responsive_css
return combined_css
css = make_custom_css()
block = gr.Blocks(css=css).queue()
with block:
# 添加语言切换功能
gr.HTML("""
<div id="app-container">
<button id="language-toggle" onclick="toggleLanguage()">中文/English</button>
</div>
<script>
// 全局变量,存储当前语言
window.currentLang = "en";
// 语言切换函数
function toggleLanguage() {
window.currentLang = window.currentLang === "en" ? "zh" : "en";
// 获取所有带有data-i18n属性的元素
const elements = document.querySelectorAll('[data-i18n]');
// 遍历并切换语言
elements.forEach(el => {
const key = el.getAttribute('data-i18n');
const translations = {
"en": {
"title": "FramePack - Image to Video Generation",
"upload_image": "Upload Image",
"prompt": "Prompt",
"quick_prompts": "Quick Prompts",
"start_generation": "Generate",
"stop_generation": "Stop",
"use_teacache": "Use TeaCache",
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
"negative_prompt": "Negative Prompt",
"seed": "Seed",
"video_length": "Video Length (seconds)",
"latent_window": "Latent Window Size",
"steps": "Inference Steps",
"steps_info": "Changing this value is not recommended.",
"cfg_scale": "CFG Scale",
"distilled_cfg": "Distilled CFG Scale",
"distilled_cfg_info": "Changing this value is not recommended.",
"cfg_rescale": "CFG Rescale",
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
"next_latents": "Next Latents",
"generated_video": "Generated Video",
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
"error_message": "Error",
"processing_error": "Processing error",
"network_error": "Network connection is unstable, model download timed out. Please try again later.",
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
"partial_video": "Processing error, but partial video has been generated",
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
},
"zh": {
"title": "FramePack - 图像到视频生成",
"upload_image": "上传图像",
"prompt": "提示词",
"quick_prompts": "快速提示词列表",
"start_generation": "开始生成",
"stop_generation": "结束生成",
"use_teacache": "使用TeaCache",
"teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。",
"negative_prompt": "负面提示词",
"seed": "随机种子",
"video_length": "视频长度(秒)",
"latent_window": "潜在窗口大小",
"steps": "推理步数",
"steps_info": "不建议修改此值。",
"cfg_scale": "CFG Scale",
"distilled_cfg": "蒸馏CFG比例",
"distilled_cfg_info": "不建议修改此值。",
"cfg_rescale": "CFG重缩放",
"gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)",
"gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。",
"next_latents": "下一批潜变量",
"generated_video": "生成的视频",
"sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。",
"error_message": "错误信息",
"processing_error": "处理过程出错",
"network_error": "网络连接不稳定,模型下载超时。请稍后再试。",
"memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。",
"model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。",
"partial_video": "处理过程中出现错误,但已生成部分视频",
"processing_interrupt": "处理过程中断,但已生成部分视频"
}
};
if (translations[window.currentLang] && translations[window.currentLang][key]) {
// 根据元素类型设置文本
if (el.tagName === 'BUTTON') {
el.textContent = translations[window.currentLang][key];
} else if (el.tagName === 'LABEL') {
el.textContent = translations[window.currentLang][key];
} else {
el.innerHTML = translations[window.currentLang][key];
}
}
});
// 更新页面上其他元素
document.querySelectorAll('.bilingual-label').forEach(el => {
const enText = el.getAttribute('data-en');
const zhText = el.getAttribute('data-zh');
el.textContent = window.currentLang === 'en' ? enText : zhText;
});
// 处理错误消息容器
document.querySelectorAll('[data-lang]').forEach(el => {
el.style.display = el.getAttribute('data-lang') === window.currentLang ? 'block' : 'none';
});
}
// 页面加载后初始化
document.addEventListener('DOMContentLoaded', function() {
// 添加data-i18n属性到需要国际化的元素
setTimeout(() => {
// 给所有标签添加i18n属性
const labelMap = {
"Upload Image": "upload_image",
"上传图像": "upload_image",
"Prompt": "prompt",
"提示词": "prompt",
"Quick Prompts": "quick_prompts",
"快速提示词列表": "quick_prompts",
"Generate": "start_generation",
"开始生成": "start_generation",
"Stop": "stop_generation",
"结束生成": "stop_generation",
// 添加其他标签映射...
};
// 处理标签
document.querySelectorAll('label, span, button').forEach(el => {
const text = el.textContent.trim();
if (labelMap[text]) {
el.setAttribute('data-i18n', labelMap[text]);
}
});
// 添加特定元素的i18n属性
const titleEl = document.querySelector('h1');
if (titleEl) titleEl.setAttribute('data-i18n', 'title');
// 初始化标签语言
toggleLanguage();
}, 1000);
});
</script>
""")
# 标题使用data-i18n属性以便JavaScript切换
gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation / 图像到视频生成</h1>")
# 使用带有mobile-full-width类的响应式行
with gr.Row(elem_classes="mobile-full-width"):
with gr.Column(scale=1, elem_classes="mobile-full-width"):
# 添加双语标签 - 上传图像
input_image = gr.Image(
sources='upload',
type="numpy",
label="Upload Image / 上传图像",
elem_id="input-image",
height=320
)
# 添加双语标签 - 提示词
prompt = gr.Textbox(
label="Prompt / 提示词",
value='',
elem_id="prompt-input"
)
# 添加双语标签 - 快速提示词
example_quick_prompts = gr.Dataset(
samples=quick_prompts,
label='Quick Prompts / 快速提示词列表',
samples_per_page=1000,
components=[prompt]
)
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
# 按钮添加样式和双语标签
with gr.Row(elem_classes="button-container"):
start_button = gr.Button(
value="Generate / 开始生成",
elem_classes="start-btn",
elem_id="start-button",
variant="primary"
)
end_button = gr.Button(
value="Stop / 结束生成",
elem_classes="stop-btn",
elem_id="stop-button",
interactive=False
)
# 参数设置区域
with gr.Group():
use_teacache = gr.Checkbox(
label='Use TeaCache / 使用TeaCache',
value=True,
info='Faster speed, but may result in slightly worse finger and hand generation. / 速度更快,但可能会使手指和手的生成效果稍差。'
)
n_prompt = gr.Textbox(label="Negative Prompt / 负面提示词", value="", visible=False) # Not used
seed = gr.Number(
label="Seed / 随机种子",
value=31337,
precision=0
)
# 添加slider-container类以便CSS触摸优化
with gr.Group(elem_classes="slider-container"):
total_second_length = gr.Slider(
label="Video Length (seconds) / 视频长度(秒)",
minimum=1,
maximum=120,
value=5,
step=0.1
)
latent_window_size = gr.Slider(
label="Latent Window Size / 潜在窗口大小",
minimum=1,
maximum=33,
value=9,
step=1,
visible=False
)
steps = gr.Slider(
label="Inference Steps / 推理步数",
minimum=1,
maximum=100,
value=25,
step=1,
info='Changing this value is not recommended. / 不建议修改此值。'
)
cfg = gr.Slider(
label="CFG Scale",
minimum=1.0,
maximum=32.0,
value=1.0,
step=0.01,
visible=False
)
gs = gr.Slider(
label="Distilled CFG Scale / 蒸馏CFG比例",
minimum=1.0,
maximum=32.0,
value=10.0,
step=0.01,
info='Changing this value is not recommended. / 不建议修改此值。'
)
rs = gr.Slider(
label="CFG Rescale / CFG重缩放",
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.01,
visible=False
)
gpu_memory_preservation = gr.Slider(
label="GPU Memory (GB) / GPU推理保留内存(GB)",
minimum=6,
maximum=128,
value=6,
step=0.1,
info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed. / 如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。"
)
# 右侧预览和结果列
with gr.Column(scale=1, elem_classes="mobile-full-width"):
# 预览图像
preview_image = gr.Image(
label="Preview / 预览",
height=200,
visible=False,
elem_classes="preview-container"
)
# 视频结果容器
result_video = gr.Video(
label="Generated Video / 生成的视频",
autoplay=True,
show_share_button=True, # 添加分享按钮
height=512,
loop=True,
elem_classes="video-container",
elem_id="result-video"
)
# 双语说明
gr.HTML("<div data-i18n='sampling_note' class='note'>Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.</div>")
# 进度指示器
with gr.Group(elem_classes="progress-container"):
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
# 错误信息区域
error_message = gr.Markdown('', elem_id='error-message')
# 处理函数
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
# 开始和结束按钮事件
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
end_button.click(fn=end_process)
block.launch()