Spaces:
Running
on
Zero
Running
on
Zero
from diffusers_helper.hf_login import login | |
import os | |
import threading | |
import time | |
import requests | |
from requests.adapters import HTTPAdapter | |
from urllib3.util.retry import Retry | |
import json | |
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))) | |
# 添加中英双语翻译字典 | |
translations = { | |
"en": { | |
"title": "FramePack - Image to Video Generation", | |
"upload_image": "Upload Image", | |
"prompt": "Prompt", | |
"quick_prompts": "Quick Prompts", | |
"start_generation": "Generate", | |
"stop_generation": "Stop", | |
"use_teacache": "Use TeaCache", | |
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.", | |
"negative_prompt": "Negative Prompt", | |
"seed": "Seed", | |
"video_length": "Video Length (seconds)", | |
"latent_window": "Latent Window Size", | |
"steps": "Inference Steps", | |
"steps_info": "Changing this value is not recommended.", | |
"cfg_scale": "CFG Scale", | |
"distilled_cfg": "Distilled CFG Scale", | |
"distilled_cfg_info": "Changing this value is not recommended.", | |
"cfg_rescale": "CFG Rescale", | |
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)", | |
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.", | |
"next_latents": "Next Latents", | |
"generated_video": "Generated Video", | |
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.", | |
"error_message": "Error", | |
"processing_error": "Processing error", | |
"network_error": "Network connection is unstable, model download timed out. Please try again later.", | |
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.", | |
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.", | |
"partial_video": "Processing error, but partial video has been generated", | |
"processing_interrupt": "Processing was interrupted, but partial video has been generated" | |
}, | |
"zh": { | |
"title": "FramePack - 图像到视频生成", | |
"upload_image": "上传图像", | |
"prompt": "提示词", | |
"quick_prompts": "快速提示词列表", | |
"start_generation": "开始生成", | |
"stop_generation": "结束生成", | |
"use_teacache": "使用TeaCache", | |
"teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。", | |
"negative_prompt": "负面提示词", | |
"seed": "随机种子", | |
"video_length": "视频长度(秒)", | |
"latent_window": "潜在窗口大小", | |
"steps": "推理步数", | |
"steps_info": "不建议修改此值。", | |
"cfg_scale": "CFG Scale", | |
"distilled_cfg": "蒸馏CFG比例", | |
"distilled_cfg_info": "不建议修改此值。", | |
"cfg_rescale": "CFG重缩放", | |
"gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)", | |
"gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。", | |
"next_latents": "下一批潜变量", | |
"generated_video": "生成的视频", | |
"sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。", | |
"error_message": "错误信息", | |
"processing_error": "处理过程出错", | |
"network_error": "网络连接不稳定,模型下载超时。请稍后再试。", | |
"memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。", | |
"model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。", | |
"partial_video": "处理过程中出现错误,但已生成部分视频", | |
"processing_interrupt": "处理过程中断,但已生成部分视频" | |
} | |
} | |
# 语言切换功能 | |
def get_translation(key, lang="en"): | |
if lang in translations and key in translations[lang]: | |
return translations[lang][key] | |
# 默认返回英文 | |
return translations["en"].get(key, key) | |
# 默认语言设置 | |
current_language = "en" | |
# 切换语言函数 | |
def switch_language(): | |
global current_language | |
current_language = "zh" if current_language == "en" else "en" | |
return current_language | |
import gradio as gr | |
import torch | |
import traceback | |
import einops | |
import safetensors.torch as sf | |
import numpy as np | |
import math | |
# 检查是否在Hugging Face Space环境中 | |
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None | |
# 如果在Hugging Face Space中,导入spaces模块 | |
if IN_HF_SPACE: | |
try: | |
import spaces | |
print("在Hugging Face Space环境中运行,已导入spaces模块") | |
except ImportError: | |
print("未能导入spaces模块,可能不在Hugging Face Space环境中") | |
from PIL import Image | |
from diffusers import AutoencoderKLHunyuanVideo | |
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer | |
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake | |
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp | |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked | |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan | |
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE | |
from diffusers_helper.thread_utils import AsyncStream, async_run | |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html | |
from transformers import SiglipImageProcessor, SiglipVisionModel | |
from diffusers_helper.clip_vision import hf_clip_vision_encode | |
from diffusers_helper.bucket_tools import find_nearest_bucket | |
outputs_folder = './outputs/' | |
os.makedirs(outputs_folder, exist_ok=True) | |
# 在Spaces环境中,我们延迟所有CUDA操作 | |
if not IN_HF_SPACE: | |
# 仅在非Spaces环境中获取CUDA内存 | |
try: | |
if torch.cuda.is_available(): | |
free_mem_gb = get_cuda_free_memory_gb(gpu) | |
print(f'Free VRAM {free_mem_gb} GB') | |
else: | |
free_mem_gb = 6.0 # 默认值 | |
print("CUDA不可用,使用默认的内存设置") | |
except Exception as e: | |
free_mem_gb = 6.0 # 默认值 | |
print(f"获取CUDA内存时出错: {e},使用默认的内存设置") | |
high_vram = free_mem_gb > 60 | |
print(f'High-VRAM Mode: {high_vram}') | |
else: | |
# 在Spaces环境中使用默认值 | |
print("在Spaces环境中使用默认内存设置") | |
free_mem_gb = 60.0 # 默认在Spaces中使用较高的值 | |
high_vram = True | |
print(f'High-VRAM Mode: {high_vram}') | |
# 使用models变量存储全局模型引用 | |
models = {} | |
# 使用加载模型的函数 | |
def load_models(): | |
global models | |
print("开始加载模型...") | |
# 加载模型 | |
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu() | |
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu() | |
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer') | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2') | |
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu() | |
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor') | |
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu() | |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu() | |
vae.eval() | |
text_encoder.eval() | |
text_encoder_2.eval() | |
image_encoder.eval() | |
transformer.eval() | |
if not high_vram: | |
vae.enable_slicing() | |
vae.enable_tiling() | |
transformer.high_quality_fp32_output_for_inference = True | |
print('transformer.high_quality_fp32_output_for_inference = True') | |
transformer.to(dtype=torch.bfloat16) | |
vae.to(dtype=torch.float16) | |
image_encoder.to(dtype=torch.float16) | |
text_encoder.to(dtype=torch.float16) | |
text_encoder_2.to(dtype=torch.float16) | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
text_encoder_2.requires_grad_(False) | |
image_encoder.requires_grad_(False) | |
transformer.requires_grad_(False) | |
if torch.cuda.is_available(): | |
if not high_vram: | |
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster | |
DynamicSwapInstaller.install_model(transformer, device=gpu) | |
DynamicSwapInstaller.install_model(text_encoder, device=gpu) | |
else: | |
text_encoder.to(gpu) | |
text_encoder_2.to(gpu) | |
image_encoder.to(gpu) | |
vae.to(gpu) | |
transformer.to(gpu) | |
# 保存到全局变量 | |
models = { | |
'text_encoder': text_encoder, | |
'text_encoder_2': text_encoder_2, | |
'tokenizer': tokenizer, | |
'tokenizer_2': tokenizer_2, | |
'vae': vae, | |
'feature_extractor': feature_extractor, | |
'image_encoder': image_encoder, | |
'transformer': transformer | |
} | |
return models | |
# 使用Hugging Face Spaces GPU装饰器 | |
if IN_HF_SPACE and 'spaces' in globals(): | |
def initialize_models(): | |
"""在@spaces.GPU装饰器内初始化模型""" | |
return load_models() | |
# 以下函数内部会延迟获取模型 | |
def get_models(): | |
"""获取模型,如果尚未加载则加载模型""" | |
global models | |
# 添加模型加载锁,防止并发加载 | |
model_loading_key = "__model_loading__" | |
if not models: | |
# 检查是否正在加载模型 | |
if model_loading_key in globals(): | |
print("模型正在加载中,等待...") | |
# 等待模型加载完成 | |
import time | |
while not models and model_loading_key in globals(): | |
time.sleep(0.5) | |
return models | |
try: | |
# 设置加载标记 | |
globals()[model_loading_key] = True | |
if IN_HF_SPACE and 'spaces' in globals(): | |
print("使用@spaces.GPU装饰器加载模型") | |
models = initialize_models() | |
else: | |
print("直接加载模型") | |
load_models() | |
finally: | |
# 无论成功与否,都移除加载标记 | |
if model_loading_key in globals(): | |
del globals()[model_loading_key] | |
return models | |
stream = AsyncStream() | |
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): | |
# 获取模型 | |
models = get_models() | |
text_encoder = models['text_encoder'] | |
text_encoder_2 = models['text_encoder_2'] | |
tokenizer = models['tokenizer'] | |
tokenizer_2 = models['tokenizer_2'] | |
vae = models['vae'] | |
feature_extractor = models['feature_extractor'] | |
image_encoder = models['image_encoder'] | |
transformer = models['transformer'] | |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) | |
total_latent_sections = int(max(round(total_latent_sections), 1)) | |
job_id = generate_timestamp() | |
last_output_filename = None | |
history_pixels = None | |
history_latents = None | |
total_generated_latent_frames = 0 | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) | |
try: | |
# Clean GPU | |
if not high_vram: | |
unload_complete_models( | |
text_encoder, text_encoder_2, image_encoder, vae, transformer | |
) | |
# Text encoding | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) | |
if not high_vram: | |
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode. | |
load_model_as_complete(text_encoder_2, target_device=gpu) | |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
if cfg == 1: | |
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) | |
else: | |
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) | |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) | |
# Processing input image | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) | |
H, W, C = input_image.shape | |
height, width = find_nearest_bucket(H, W, resolution=640) | |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) | |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) | |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 | |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] | |
# VAE encoding | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) | |
if not high_vram: | |
load_model_as_complete(vae, target_device=gpu) | |
start_latent = vae_encode(input_image_pt, vae) | |
# CLIP Vision | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) | |
if not high_vram: | |
load_model_as_complete(image_encoder, target_device=gpu) | |
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) | |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state | |
# Dtype | |
llama_vec = llama_vec.to(transformer.dtype) | |
llama_vec_n = llama_vec_n.to(transformer.dtype) | |
clip_l_pooler = clip_l_pooler.to(transformer.dtype) | |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) | |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) | |
# Sampling | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) | |
rnd = torch.Generator("cpu").manual_seed(seed) | |
num_frames = latent_window_size * 4 - 3 | |
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu() | |
history_pixels = None | |
total_generated_latent_frames = 0 | |
latent_paddings = reversed(range(total_latent_sections)) | |
if total_latent_sections > 4: | |
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some | |
# items looks better than expanding it when total_latent_sections > 4 | |
# One can try to remove below trick and just | |
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare | |
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0] | |
for latent_padding in latent_paddings: | |
is_last_section = latent_padding == 0 | |
latent_padding_size = latent_padding * latent_window_size | |
if stream.input_queue.top() == 'end': | |
# 确保在结束时保存当前的视频 | |
if history_pixels is not None and total_generated_latent_frames > 0: | |
try: | |
output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4') | |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30) | |
stream.output_queue.push(('file', output_filename)) | |
except Exception as e: | |
print(f"保存最终视频时出错: {e}") | |
stream.output_queue.push(('end', None)) | |
return | |
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}') | |
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0) | |
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1) | |
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1) | |
clean_latents_pre = start_latent.to(history_latents) | |
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2) | |
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2) | |
if not high_vram: | |
unload_complete_models() | |
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation) | |
if use_teacache: | |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps) | |
else: | |
transformer.initialize_teacache(enable_teacache=False) | |
def callback(d): | |
preview = d['denoised'] | |
preview = vae_decode_fake(preview) | |
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) | |
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') | |
if stream.input_queue.top() == 'end': | |
stream.output_queue.push(('end', None)) | |
raise KeyboardInterrupt('User ends the task.') | |
current_step = d['i'] + 1 | |
percentage = int(100.0 * current_step / steps) | |
hint = f'Sampling {current_step}/{steps}' | |
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...' | |
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) | |
return | |
try: | |
generated_latents = sample_hunyuan( | |
transformer=transformer, | |
sampler='unipc', | |
width=width, | |
height=height, | |
frames=num_frames, | |
real_guidance_scale=cfg, | |
distilled_guidance_scale=gs, | |
guidance_rescale=rs, | |
# shift=3.0, | |
num_inference_steps=steps, | |
generator=rnd, | |
prompt_embeds=llama_vec, | |
prompt_embeds_mask=llama_attention_mask, | |
prompt_poolers=clip_l_pooler, | |
negative_prompt_embeds=llama_vec_n, | |
negative_prompt_embeds_mask=llama_attention_mask_n, | |
negative_prompt_poolers=clip_l_pooler_n, | |
device=gpu, | |
dtype=torch.bfloat16, | |
image_embeddings=image_encoder_last_hidden_state, | |
latent_indices=latent_indices, | |
clean_latents=clean_latents, | |
clean_latent_indices=clean_latent_indices, | |
clean_latents_2x=clean_latents_2x, | |
clean_latent_2x_indices=clean_latent_2x_indices, | |
clean_latents_4x=clean_latents_4x, | |
clean_latent_4x_indices=clean_latent_4x_indices, | |
callback=callback, | |
) | |
except Exception as e: | |
print(f"采样过程中出错: {e}") | |
traceback.print_exc() | |
# 如果已经有生成的视频,返回最后生成的视频 | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
stream.output_queue.push(('end', None)) | |
return | |
if is_last_section: | |
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2) | |
total_generated_latent_frames += int(generated_latents.shape[2]) | |
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2) | |
if not high_vram: | |
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) | |
load_model_as_complete(vae, target_device=gpu) | |
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :] | |
try: | |
if history_pixels is None: | |
history_pixels = vae_decode(real_history_latents, vae).cpu() | |
else: | |
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2) | |
overlapped_frames = latent_window_size * 4 - 3 | |
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu() | |
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames) | |
if not high_vram: | |
unload_complete_models() | |
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') | |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30) | |
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') | |
last_output_filename = output_filename | |
stream.output_queue.push(('file', output_filename)) | |
except Exception as e: | |
print(f"视频解码或保存过程中出错: {e}") | |
traceback.print_exc() | |
# 如果已经有生成的视频,返回最后生成的视频 | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
# 尝试继续下一次迭代 | |
continue | |
if is_last_section: | |
break | |
except Exception as e: | |
print(f"处理过程中出现错误: {e}") | |
traceback.print_exc() | |
if not high_vram: | |
try: | |
unload_complete_models( | |
text_encoder, text_encoder_2, image_encoder, vae, transformer | |
) | |
except Exception: | |
pass | |
# 如果已经有生成的视频,返回最后生成的视频 | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
# 确保总是返回end信号 | |
stream.output_queue.push(('end', None)) | |
return | |
# 使用Hugging Face Spaces GPU装饰器处理进程函数 | |
if IN_HF_SPACE and 'spaces' in globals(): | |
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): | |
global stream | |
assert input_image is not None, 'No input image!' | |
# 初始化UI状态 | |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
try: | |
stream = AsyncStream() | |
# 异步启动worker | |
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache) | |
output_filename = None | |
prev_output_filename = None | |
# 持续检查worker的输出 | |
while True: | |
try: | |
flag, data = stream.output_queue.next() | |
if flag == 'file': | |
output_filename = data | |
prev_output_filename = output_filename | |
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) | |
if flag == 'progress': | |
preview, desc, html = data | |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) | |
if flag == 'end': | |
# 如果有最后的视频文件,确保返回 | |
if output_filename is None and prev_output_filename is not None: | |
output_filename = prev_output_filename | |
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"处理输出时出错: {e}") | |
# 检查是否长时间没有更新 | |
current_time = time.time() | |
if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了 | |
print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新") | |
# 如果有部分生成的视频,返回 | |
if prev_output_filename: | |
# 创建双语部分视频生成消息 | |
partial_video_msg = f""" | |
<div id="partial-video-container"> | |
<div class="msg-en" data-lang="en">Processing error, but partial video has been generated</div> | |
<div class="msg-zh" data-lang="zh">处理过程中出现错误,但已生成部分视频</div> | |
</div> | |
<script> | |
// 根据当前语言显示相应的消息 | |
(function() {{ | |
const container = document.getElementById('partial-video-container'); | |
if (container) {{ | |
const currentLang = window.currentLang || 'en'; // 默认英语 | |
const msgs = container.querySelectorAll('[data-lang]'); | |
msgs.forEach(msg => {{ | |
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none'; | |
}}); | |
}} | |
}})(); | |
</script> | |
""" | |
yield prev_output_filename, gr.update(visible=False), gr.update(), partial_video_msg, gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
# 创建双语错误消息 | |
error_msg = str(e) | |
en_msg = f"Processing error: {error_msg}" | |
zh_msg = f"处理过程中出现错误: {error_msg}" | |
error_html = f""" | |
<div id="error-msg-container"> | |
<div class="error-msg-en" data-lang="en">{en_msg}</div> | |
<div class="error-msg-zh" data-lang="zh">{zh_msg}</div> | |
</div> | |
<script> | |
// 根据当前语言显示相应的错误消息 | |
(function() {{ | |
const errorContainer = document.getElementById('error-msg-container'); | |
if (errorContainer) {{ | |
const currentLang = window.currentLang || 'en'; // 默认英语 | |
const errMsgs = errorContainer.querySelectorAll('[data-lang]'); | |
errMsgs.forEach(msg => {{ | |
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none'; | |
}}); | |
}} | |
}})(); | |
</script> | |
""" | |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"启动处理时出错: {e}") | |
traceback.print_exc() | |
error_msg = str(e) | |
user_friendly_msg = f'处理过程出错: {error_msg}' | |
# 提供更友好的中英文双语错误信息 | |
en_msg = "" | |
zh_msg = "" | |
if "模型下载超时" in error_msg or "网络连接不稳定" in error_msg or "ReadTimeoutError" in error_msg or "ConnectionError" in error_msg: | |
en_msg = "Network connection is unstable, model download timed out. Please try again later." | |
zh_msg = "网络连接不稳定,模型下载超时。请稍后再试。" | |
elif "GPU内存不足" in error_msg or "CUDA out of memory" in error_msg or "OutOfMemoryError" in error_msg: | |
en_msg = "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length." | |
zh_msg = "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。" | |
elif "无法加载模型" in error_msg: | |
en_msg = "Failed to load model, possibly due to network issues or high server load. Please try again later." | |
zh_msg = "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。" | |
else: | |
en_msg = f"Processing error: {error_msg}" | |
zh_msg = f"处理过程出错: {error_msg}" | |
# 创建双语错误消息HTML | |
bilingual_error = f""" | |
<div id="error-container"> | |
<div class="error-msg-en" data-lang="en">{en_msg}</div> | |
<div class="error-msg-zh" data-lang="zh">{zh_msg}</div> | |
</div> | |
<script> | |
// 根据当前语言显示相应的错误消息 | |
(function() {{ | |
const errorContainer = document.getElementById('error-container'); | |
if (errorContainer) {{ | |
const currentLang = window.currentLang || 'en'; // 默认英语 | |
const errMsgs = errorContainer.querySelectorAll('[data-lang]'); | |
errMsgs.forEach(msg => {{ | |
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none'; | |
}}); | |
}} | |
}})(); | |
</script> | |
""" | |
yield None, gr.update(visible=False), gr.update(), bilingual_error, gr.update(interactive=True), gr.update(interactive=False) | |
process = process_with_gpu | |
else: | |
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): | |
global stream | |
assert input_image is not None, 'No input image!' | |
# 初始化UI状态 | |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
try: | |
stream = AsyncStream() | |
# 异步启动worker | |
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache) | |
output_filename = None | |
prev_output_filename = None | |
# 持续检查worker的输出 | |
while True: | |
try: | |
flag, data = stream.output_queue.next() | |
if flag == 'file': | |
output_filename = data | |
prev_output_filename = output_filename | |
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) | |
if flag == 'progress': | |
preview, desc, html = data | |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) | |
if flag == 'end': | |
# 如果有最后的视频文件,确保返回 | |
if output_filename is None and prev_output_filename is not None: | |
output_filename = prev_output_filename | |
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"处理输出时出错: {e}") | |
# 检查是否长时间没有更新 | |
current_time = time.time() | |
if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了 | |
print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新") | |
# 如果有部分生成的视频,返回 | |
if prev_output_filename: | |
# 创建中断消息的双语支持 | |
interrupt_msg = f""" | |
<div id="interrupt-container"> | |
<div class="msg-en" data-lang="en">Processing was interrupted, but partial video has been generated</div> | |
<div class="msg-zh" data-lang="zh">处理过程中断,但已生成部分视频</div> | |
</div> | |
<script> | |
// 根据当前语言显示相应的消息 | |
(function() {{ | |
const container = document.getElementById('interrupt-container'); | |
if (container) {{ | |
const currentLang = window.currentLang || 'en'; // 默认英语 | |
const msgs = container.querySelectorAll('[data-lang]'); | |
msgs.forEach(msg => {{ | |
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none'; | |
}}); | |
}} | |
}})(); | |
</script> | |
""" | |
yield prev_output_filename, gr.update(visible=False), gr.update(), interrupt_msg, gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"启动处理时出错: {e}") | |
traceback.print_exc() | |
error_msg = str(e) | |
user_friendly_msg = f'处理过程出错: {error_msg}' | |
# 提供更友好的中英文双语错误信息 | |
en_msg = "" | |
zh_msg = "" | |
if "模型下载超时" in error_msg or "网络连接不稳定" in error_msg or "ReadTimeoutError" in error_msg or "ConnectionError" in error_msg: | |
en_msg = "Network connection is unstable, model download timed out. Please try again later." | |
zh_msg = "网络连接不稳定,模型下载超时。请稍后再试。" | |
elif "GPU内存不足" in error_msg or "CUDA out of memory" in error_msg or "OutOfMemoryError" in error_msg: | |
en_msg = "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length." | |
zh_msg = "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。" | |
elif "无法加载模型" in error_msg: | |
en_msg = "Failed to load model, possibly due to network issues or high server load. Please try again later." | |
zh_msg = "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。" | |
else: | |
en_msg = f"Processing error: {error_msg}" | |
zh_msg = f"处理过程出错: {error_msg}" | |
# 创建双语错误消息HTML | |
bilingual_error = f""" | |
<div id="error-container"> | |
<div class="error-msg-en" data-lang="en">{en_msg}</div> | |
<div class="error-msg-zh" data-lang="zh">{zh_msg}</div> | |
</div> | |
<script> | |
// 根据当前语言显示相应的错误消息 | |
(function() {{ | |
const errorContainer = document.getElementById('error-container'); | |
if (errorContainer) {{ | |
const currentLang = window.currentLang || 'en'; // 默认英语 | |
const errMsgs = errorContainer.querySelectorAll('[data-lang]'); | |
errMsgs.forEach(msg => {{ | |
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none'; | |
}}); | |
}} | |
}})(); | |
</script> | |
""" | |
yield None, gr.update(visible=False), gr.update(), bilingual_error, gr.update(interactive=True), gr.update(interactive=False) | |
def end_process(): | |
stream.input_queue.push('end') | |
quick_prompts = [ | |
'The girl dances gracefully, with clear movements, full of charm.', | |
'A character doing some simple body movements.', | |
] | |
quick_prompts = [[x] for x in quick_prompts] | |
# 创建一个自定义CSS,增加响应式布局支持 | |
def make_custom_css(): | |
progress_bar_css = make_progress_bar_css() | |
responsive_css = """ | |
/* 基础响应式设置 */ | |
#app-container { | |
max-width: 100%; | |
margin: 0 auto; | |
} | |
/* 语言切换按钮样式 */ | |
#language-toggle { | |
position: fixed; | |
top: 10px; | |
right: 10px; | |
z-index: 1000; | |
background-color: rgba(0, 0, 0, 0.7); | |
color: white; | |
border: none; | |
border-radius: 4px; | |
padding: 5px 10px; | |
cursor: pointer; | |
font-size: 14px; | |
} | |
/* 页面标题样式 */ | |
h1 { | |
font-size: 2rem; | |
text-align: center; | |
margin-bottom: 1rem; | |
} | |
/* 按钮样式 */ | |
.start-btn, .stop-btn { | |
min-height: 45px; | |
font-size: 1rem; | |
} | |
/* 移动设备样式 - 小屏幕 */ | |
@media (max-width: 768px) { | |
h1 { | |
font-size: 1.5rem; | |
margin-bottom: 0.5rem; | |
} | |
/* 单列布局 */ | |
.mobile-full-width { | |
flex-direction: column !important; | |
} | |
.mobile-full-width > .gr-block { | |
min-width: 100% !important; | |
flex-grow: 1; | |
} | |
/* 调整视频大小 */ | |
.video-container { | |
height: auto !important; | |
} | |
/* 调整按钮大小 */ | |
.button-container button { | |
min-height: 50px; | |
font-size: 1rem; | |
touch-action: manipulation; | |
} | |
/* 调整滑块 */ | |
.slider-container input[type="range"] { | |
height: 30px; | |
} | |
} | |
/* 平板设备样式 */ | |
@media (min-width: 769px) and (max-width: 1024px) { | |
.tablet-adjust { | |
width: 48% !important; | |
} | |
} | |
/* 黑暗模式支持 */ | |
@media (prefers-color-scheme: dark) { | |
.dark-mode-text { | |
color: #f0f0f0; | |
} | |
.dark-mode-bg { | |
background-color: #2a2a2a; | |
} | |
} | |
/* 增强可访问性 */ | |
button, input, select, textarea { | |
font-size: 16px; /* 防止iOS缩放 */ | |
} | |
/* 触摸优化 */ | |
button, .interactive-element { | |
min-height: 44px; | |
min-width: 44px; | |
} | |
/* 提高对比度 */ | |
.high-contrast { | |
color: #fff; | |
background-color: #000; | |
} | |
/* 进度条样式增强 */ | |
.progress-container { | |
margin-top: 10px; | |
margin-bottom: 10px; | |
} | |
/* 错误消息样式 */ | |
#error-message { | |
color: #ff4444; | |
font-weight: bold; | |
padding: 10px; | |
border-radius: 4px; | |
margin-top: 10px; | |
background-color: rgba(255, 0, 0, 0.1); | |
} | |
""" | |
# 合并CSS | |
combined_css = progress_bar_css + responsive_css | |
return combined_css | |
css = make_custom_css() | |
block = gr.Blocks(css=css).queue() | |
with block: | |
# 添加语言切换功能 | |
gr.HTML(""" | |
<div id="app-container"> | |
<button id="language-toggle" onclick="toggleLanguage()">中文/English</button> | |
</div> | |
<script> | |
// 全局变量,存储当前语言 | |
window.currentLang = "en"; | |
// 语言切换函数 | |
function toggleLanguage() { | |
window.currentLang = window.currentLang === "en" ? "zh" : "en"; | |
// 获取所有带有data-i18n属性的元素 | |
const elements = document.querySelectorAll('[data-i18n]'); | |
// 遍历并切换语言 | |
elements.forEach(el => { | |
const key = el.getAttribute('data-i18n'); | |
const translations = { | |
"en": { | |
"title": "FramePack - Image to Video Generation", | |
"upload_image": "Upload Image", | |
"prompt": "Prompt", | |
"quick_prompts": "Quick Prompts", | |
"start_generation": "Generate", | |
"stop_generation": "Stop", | |
"use_teacache": "Use TeaCache", | |
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.", | |
"negative_prompt": "Negative Prompt", | |
"seed": "Seed", | |
"video_length": "Video Length (seconds)", | |
"latent_window": "Latent Window Size", | |
"steps": "Inference Steps", | |
"steps_info": "Changing this value is not recommended.", | |
"cfg_scale": "CFG Scale", | |
"distilled_cfg": "Distilled CFG Scale", | |
"distilled_cfg_info": "Changing this value is not recommended.", | |
"cfg_rescale": "CFG Rescale", | |
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)", | |
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.", | |
"next_latents": "Next Latents", | |
"generated_video": "Generated Video", | |
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.", | |
"error_message": "Error", | |
"processing_error": "Processing error", | |
"network_error": "Network connection is unstable, model download timed out. Please try again later.", | |
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.", | |
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.", | |
"partial_video": "Processing error, but partial video has been generated", | |
"processing_interrupt": "Processing was interrupted, but partial video has been generated" | |
}, | |
"zh": { | |
"title": "FramePack - 图像到视频生成", | |
"upload_image": "上传图像", | |
"prompt": "提示词", | |
"quick_prompts": "快速提示词列表", | |
"start_generation": "开始生成", | |
"stop_generation": "结束生成", | |
"use_teacache": "使用TeaCache", | |
"teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。", | |
"negative_prompt": "负面提示词", | |
"seed": "随机种子", | |
"video_length": "视频长度(秒)", | |
"latent_window": "潜在窗口大小", | |
"steps": "推理步数", | |
"steps_info": "不建议修改此值。", | |
"cfg_scale": "CFG Scale", | |
"distilled_cfg": "蒸馏CFG比例", | |
"distilled_cfg_info": "不建议修改此值。", | |
"cfg_rescale": "CFG重缩放", | |
"gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)", | |
"gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。", | |
"next_latents": "下一批潜变量", | |
"generated_video": "生成的视频", | |
"sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。", | |
"error_message": "错误信息", | |
"processing_error": "处理过程出错", | |
"network_error": "网络连接不稳定,模型下载超时。请稍后再试。", | |
"memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。", | |
"model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。", | |
"partial_video": "处理过程中出现错误,但已生成部分视频", | |
"processing_interrupt": "处理过程中断,但已生成部分视频" | |
} | |
}; | |
if (translations[window.currentLang] && translations[window.currentLang][key]) { | |
// 根据元素类型设置文本 | |
if (el.tagName === 'BUTTON') { | |
el.textContent = translations[window.currentLang][key]; | |
} else if (el.tagName === 'LABEL') { | |
el.textContent = translations[window.currentLang][key]; | |
} else { | |
el.innerHTML = translations[window.currentLang][key]; | |
} | |
} | |
}); | |
// 更新页面上其他元素 | |
document.querySelectorAll('.bilingual-label').forEach(el => { | |
const enText = el.getAttribute('data-en'); | |
const zhText = el.getAttribute('data-zh'); | |
el.textContent = window.currentLang === 'en' ? enText : zhText; | |
}); | |
// 处理错误消息容器 | |
document.querySelectorAll('[data-lang]').forEach(el => { | |
el.style.display = el.getAttribute('data-lang') === window.currentLang ? 'block' : 'none'; | |
}); | |
} | |
// 页面加载后初始化 | |
document.addEventListener('DOMContentLoaded', function() { | |
// 添加data-i18n属性到需要国际化的元素 | |
setTimeout(() => { | |
// 给所有标签添加i18n属性 | |
const labelMap = { | |
"Upload Image": "upload_image", | |
"上传图像": "upload_image", | |
"Prompt": "prompt", | |
"提示词": "prompt", | |
"Quick Prompts": "quick_prompts", | |
"快速提示词列表": "quick_prompts", | |
"Generate": "start_generation", | |
"开始生成": "start_generation", | |
"Stop": "stop_generation", | |
"结束生成": "stop_generation", | |
// 添加其他标签映射... | |
}; | |
// 处理标签 | |
document.querySelectorAll('label, span, button').forEach(el => { | |
const text = el.textContent.trim(); | |
if (labelMap[text]) { | |
el.setAttribute('data-i18n', labelMap[text]); | |
} | |
}); | |
// 添加特定元素的i18n属性 | |
const titleEl = document.querySelector('h1'); | |
if (titleEl) titleEl.setAttribute('data-i18n', 'title'); | |
// 初始化标签语言 | |
toggleLanguage(); | |
}, 1000); | |
}); | |
</script> | |
""") | |
# 标题使用data-i18n属性以便JavaScript切换 | |
gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation / 图像到视频生成</h1>") | |
# 使用带有mobile-full-width类的响应式行 | |
with gr.Row(elem_classes="mobile-full-width"): | |
with gr.Column(scale=1, elem_classes="mobile-full-width"): | |
# 添加双语标签 - 上传图像 | |
input_image = gr.Image( | |
sources='upload', | |
type="numpy", | |
label="Upload Image / 上传图像", | |
elem_id="input-image", | |
height=320 | |
) | |
# 添加双语标签 - 提示词 | |
prompt = gr.Textbox( | |
label="Prompt / 提示词", | |
value='', | |
elem_id="prompt-input" | |
) | |
# 添加双语标签 - 快速提示词 | |
example_quick_prompts = gr.Dataset( | |
samples=quick_prompts, | |
label='Quick Prompts / 快速提示词列表', | |
samples_per_page=1000, | |
components=[prompt] | |
) | |
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False) | |
# 按钮添加样式和双语标签 | |
with gr.Row(elem_classes="button-container"): | |
start_button = gr.Button( | |
value="Generate / 开始生成", | |
elem_classes="start-btn", | |
elem_id="start-button", | |
variant="primary" | |
) | |
end_button = gr.Button( | |
value="Stop / 结束生成", | |
elem_classes="stop-btn", | |
elem_id="stop-button", | |
interactive=False | |
) | |
# 参数设置区域 | |
with gr.Group(): | |
use_teacache = gr.Checkbox( | |
label='Use TeaCache / 使用TeaCache', | |
value=True, | |
info='Faster speed, but may result in slightly worse finger and hand generation. / 速度更快,但可能会使手指和手的生成效果稍差。' | |
) | |
n_prompt = gr.Textbox(label="Negative Prompt / 负面提示词", value="", visible=False) # Not used | |
seed = gr.Number( | |
label="Seed / 随机种子", | |
value=31337, | |
precision=0 | |
) | |
# 添加slider-container类以便CSS触摸优化 | |
with gr.Group(elem_classes="slider-container"): | |
total_second_length = gr.Slider( | |
label="Video Length (seconds) / 视频长度(秒)", | |
minimum=1, | |
maximum=120, | |
value=5, | |
step=0.1 | |
) | |
latent_window_size = gr.Slider( | |
label="Latent Window Size / 潜在窗口大小", | |
minimum=1, | |
maximum=33, | |
value=9, | |
step=1, | |
visible=False | |
) | |
steps = gr.Slider( | |
label="Inference Steps / 推理步数", | |
minimum=1, | |
maximum=100, | |
value=25, | |
step=1, | |
info='Changing this value is not recommended. / 不建议修改此值。' | |
) | |
cfg = gr.Slider( | |
label="CFG Scale", | |
minimum=1.0, | |
maximum=32.0, | |
value=1.0, | |
step=0.01, | |
visible=False | |
) | |
gs = gr.Slider( | |
label="Distilled CFG Scale / 蒸馏CFG比例", | |
minimum=1.0, | |
maximum=32.0, | |
value=10.0, | |
step=0.01, | |
info='Changing this value is not recommended. / 不建议修改此值。' | |
) | |
rs = gr.Slider( | |
label="CFG Rescale / CFG重缩放", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.0, | |
step=0.01, | |
visible=False | |
) | |
gpu_memory_preservation = gr.Slider( | |
label="GPU Memory (GB) / GPU推理保留内存(GB)", | |
minimum=6, | |
maximum=128, | |
value=6, | |
step=0.1, | |
info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed. / 如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。" | |
) | |
# 右侧预览和结果列 | |
with gr.Column(scale=1, elem_classes="mobile-full-width"): | |
# 预览图像 | |
preview_image = gr.Image( | |
label="Preview / 预览", | |
height=200, | |
visible=False, | |
elem_classes="preview-container" | |
) | |
# 视频结果容器 | |
result_video = gr.Video( | |
label="Generated Video / 生成的视频", | |
autoplay=True, | |
show_share_button=True, # 添加分享按钮 | |
height=512, | |
loop=True, | |
elem_classes="video-container", | |
elem_id="result-video" | |
) | |
# 双语说明 | |
gr.HTML("<div data-i18n='sampling_note' class='note'>Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.</div>") | |
# 进度指示器 | |
with gr.Group(elem_classes="progress-container"): | |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation') | |
progress_bar = gr.HTML('', elem_classes='no-generating-animation') | |
# 错误信息区域 | |
error_message = gr.Markdown('', elem_id='error-message') | |
# 处理函数 | |
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache] | |
# 开始和结束按钮事件 | |
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]) | |
end_button.click(fn=end_process) | |
block.launch() |