File size: 7,011 Bytes
9360743
 
 
 
0f1d758
9360743
0f1d758
 
9360743
0f1d758
9360743
0f1d758
cdbfba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1d758
9360743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdbfba8
 
 
 
 
9360743
 
 
 
 
 
 
 
 
 
 
 
 
0f1d758
cdbfba8
 
 
 
0f1d758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9360743
 
 
 
 
cdbfba8
 
 
 
 
 
 
 
 
0f1d758
cdbfba8
0f1d758
 
 
 
9360743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdbfba8
 
 
 
 
 
 
 
 
0f1d758
cdbfba8
0f1d758
 
 
 
9360743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1d758
9360743
 
 
 
cdbfba8
 
 
 
9360743
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# By lllyasviel


import torch
import os

# 检查是否在Hugging Face Space环境中
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None

# 设置CPU设备
cpu = torch.device('cpu')

# 在Stateless GPU环境中,不要在主进程初始化CUDA
def get_gpu_device():
    if IN_HF_SPACE:
        # 在Spaces中将延迟初始化GPU设备
        return 'cuda'  # 返回字符串,而不是实际初始化设备
    
    # 非Spaces环境正常初始化
    try:
        if torch.cuda.is_available():
            return torch.device(f'cuda:{torch.cuda.current_device()}')
        else:
            print("CUDA不可用,使用CPU作为默认设备")
            return torch.device('cpu')
    except Exception as e:
        print(f"初始化CUDA设备时出错: {e}")
        print("回退到CPU设备")
        return torch.device('cpu')

# 保存一个字符串表示,而不是实际的设备对象
gpu = get_gpu_device()

gpu_complete_modules = []


class DynamicSwapInstaller:
    @staticmethod
    def _install_module(module: torch.nn.Module, **kwargs):
        original_class = module.__class__
        module.__dict__['forge_backup_original_class'] = original_class

        def hacked_get_attr(self, name: str):
            if '_parameters' in self.__dict__:
                _parameters = self.__dict__['_parameters']
                if name in _parameters:
                    p = _parameters[name]
                    if p is None:
                        return None
                    if p.__class__ == torch.nn.Parameter:
                        return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad)
                    else:
                        return p.to(**kwargs)
            if '_buffers' in self.__dict__:
                _buffers = self.__dict__['_buffers']
                if name in _buffers:
                    return _buffers[name].to(**kwargs)
            return super(original_class, self).__getattr__(name)

        module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), {
            '__getattr__': hacked_get_attr,
        })

        return

    @staticmethod
    def _uninstall_module(module: torch.nn.Module):
        if 'forge_backup_original_class' in module.__dict__:
            module.__class__ = module.__dict__.pop('forge_backup_original_class')
        return

    @staticmethod
    def install_model(model: torch.nn.Module, **kwargs):
        for m in model.modules():
            DynamicSwapInstaller._install_module(m, **kwargs)
        return

    @staticmethod
    def uninstall_model(model: torch.nn.Module):
        for m in model.modules():
            DynamicSwapInstaller._uninstall_module(m)
        return


def fake_diffusers_current_device(model: torch.nn.Module, target_device):
    # 转换字符串设备为torch.device
    if isinstance(target_device, str):
        target_device = torch.device(target_device)
        
    if hasattr(model, 'scale_shift_table'):
        model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
        return

    for k, p in model.named_modules():
        if hasattr(p, 'weight'):
            p.to(target_device)
            return


def get_cuda_free_memory_gb(device=None):
    if device is None:
        device = gpu
    
    # 如果是字符串,转换为设备
    if isinstance(device, str):
        device = torch.device(device)
    
    # 如果不是CUDA设备,返回默认值
    if device.type != 'cuda':
        print("无法获取非CUDA设备的内存信息,返回默认值")
        return 6.0  # 返回一个默认值
    
    try:
        memory_stats = torch.cuda.memory_stats(device)
        bytes_active = memory_stats['active_bytes.all.current']
        bytes_reserved = memory_stats['reserved_bytes.all.current']
        bytes_free_cuda, _ = torch.cuda.mem_get_info(device)
        bytes_inactive_reserved = bytes_reserved - bytes_active
        bytes_total_available = bytes_free_cuda + bytes_inactive_reserved
        return bytes_total_available / (1024 ** 3)
    except Exception as e:
        print(f"获取CUDA内存信息时出错: {e}")
        return 6.0  # 返回一个默认值


def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
    print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')

    # 如果是字符串,转换为设备
    if isinstance(target_device, str):
        target_device = torch.device(target_device)
    
    # 如果gpu是字符串,转换为设备
    gpu_device = gpu
    if isinstance(gpu_device, str):
        gpu_device = torch.device(gpu_device)

    # 如果目标设备是CPU或当前在CPU上,直接移动
    if target_device.type == 'cpu' or gpu_device.type == 'cpu':
        model.to(device=target_device)
        torch.cuda.empty_cache() if torch.cuda.is_available() else None
        return

    for m in model.modules():
        if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb:
            torch.cuda.empty_cache()
            return

        if hasattr(m, 'weight'):
            m.to(device=target_device)

    model.to(device=target_device)
    torch.cuda.empty_cache()
    return


def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
    print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')

    # 如果是字符串,转换为设备
    if isinstance(target_device, str):
        target_device = torch.device(target_device)
    
    # 如果gpu是字符串,转换为设备
    gpu_device = gpu
    if isinstance(gpu_device, str):
        gpu_device = torch.device(gpu_device)

    # 如果目标设备是CPU或当前在CPU上,直接处理
    if target_device.type == 'cpu' or gpu_device.type == 'cpu':
        model.to(device=cpu)
        torch.cuda.empty_cache() if torch.cuda.is_available() else None
        return

    for m in model.modules():
        if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb:
            torch.cuda.empty_cache()
            return

        if hasattr(m, 'weight'):
            m.to(device=cpu)

    model.to(device=cpu)
    torch.cuda.empty_cache()
    return


def unload_complete_models(*args):
    for m in gpu_complete_modules + list(args):
        m.to(device=cpu)
        print(f'Unloaded {m.__class__.__name__} as complete.')

    gpu_complete_modules.clear()
    torch.cuda.empty_cache() if torch.cuda.is_available() else None
    return


def load_model_as_complete(model, target_device, unload=True):
    # 如果是字符串,转换为设备
    if isinstance(target_device, str):
        target_device = torch.device(target_device)
        
    if unload:
        unload_complete_models()

    model.to(device=target_device)
    print(f'Loaded {model.__class__.__name__} to {target_device} as complete.')

    gpu_complete_modules.append(model)
    return