# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import contextlib import dataclasses import itertools import math import os import unittest import lpips import numpy as np import torch from pytorch3d.implicitron.dataset.frame_data import FrameData from pytorch3d.implicitron.dataset.json_index_dataset import JsonIndexDataset from pytorch3d.implicitron.evaluation.evaluate_new_view_synthesis import eval_batch from pytorch3d.implicitron.models.base_model import ImplicitronModelBase from pytorch3d.implicitron.models.generic_model import GenericModel # noqa from pytorch3d.implicitron.models.model_dbir import ModelDBIR # noqa from pytorch3d.implicitron.tools.config import expand_args_fields, registry from pytorch3d.implicitron.tools.metric_utils import calc_psnr, eval_depth from pytorch3d.implicitron.tools.utils import dataclass_to_cuda_ from .common_resources import get_skateboard_data, provide_lpips_vgg class TestEvaluation(unittest.TestCase): def setUp(self): # initialize evaluation dataset/dataloader torch.manual_seed(42) stack = contextlib.ExitStack() dataset_root, path_manager = stack.enter_context(get_skateboard_data()) self.addCleanup(stack.close) category = "skateboard" frame_file = os.path.join(dataset_root, category, "frame_annotations.jgz") sequence_file = os.path.join(dataset_root, category, "sequence_annotations.jgz") self.image_size = 64 expand_args_fields(JsonIndexDataset) self.dataset = JsonIndexDataset( frame_annotations_file=frame_file, sequence_annotations_file=sequence_file, dataset_root=dataset_root, image_height=self.image_size, image_width=self.image_size, box_crop=True, remove_empty_masks=False, path_manager=path_manager, ) self.bg_color = (0.0, 0.0, 0.0) # init the lpips model for eval provide_lpips_vgg() self.lpips_model = lpips.LPIPS(net="vgg").cuda() def test_eval_depth(self): """ Check that eval_depth correctly masks errors and that, for get_best_scale=True, the error with scaled prediction equals the error without scaling the predicted depth. Finally, test that the error values are as expected for prediction and gt differing by a constant offset. """ gt = (torch.randn(10, 1, 300, 400, device="cuda") * 5.0).clamp(0.0) mask = (torch.rand_like(gt) > 0.5).type_as(gt) for diff in 10 ** torch.linspace(-5, 0, 6): for crop in (0, 5): pred = gt + (torch.rand_like(gt) - 0.5) * 2 * diff # scaled prediction test mse_depth, abs_depth = eval_depth( pred, gt, crop=crop, mask=mask, get_best_scale=True, ) mse_depth_scale, abs_depth_scale = eval_depth( pred * 10.0, gt, crop=crop, mask=mask, get_best_scale=True, ) self.assertAlmostEqual( float(mse_depth.sum()), float(mse_depth_scale.sum()), delta=1e-4 ) self.assertAlmostEqual( float(abs_depth.sum()), float(abs_depth_scale.sum()), delta=1e-4 ) # error masking test pred_masked_err = gt + (torch.rand_like(gt) + diff) * (1 - mask) mse_depth_masked, abs_depth_masked = eval_depth( pred_masked_err, gt, crop=crop, mask=mask, get_best_scale=True, ) self.assertAlmostEqual( float(mse_depth_masked.sum()), float(0.0), delta=1e-4 ) self.assertAlmostEqual( float(abs_depth_masked.sum()), float(0.0), delta=1e-4 ) mse_depth_unmasked, abs_depth_unmasked = eval_depth( pred_masked_err, gt, crop=crop, mask=1 - mask, get_best_scale=True, ) self.assertGreater( float(mse_depth_unmasked.sum()), float(diff**2), ) self.assertGreater( float(abs_depth_unmasked.sum()), float(diff), ) # tests with constant error pred_fix_diff = gt + diff * mask for _mask_gt in (mask, None): mse_depth_fix_diff, abs_depth_fix_diff = eval_depth( pred_fix_diff, gt, crop=crop, mask=_mask_gt, get_best_scale=False, ) if _mask_gt is not None: expected_err_abs = diff expected_err_mse = diff**2 else: err_mask = (gt > 0.0).float() * mask if crop > 0: err_mask = err_mask[:, :, crop:-crop, crop:-crop] gt_cropped = gt[:, :, crop:-crop, crop:-crop] else: gt_cropped = gt gt_mass = (gt_cropped > 0.0).float().sum(dim=(1, 2, 3)) expected_err_abs = ( diff * err_mask.sum(dim=(1, 2, 3)) / (gt_mass) ) expected_err_mse = diff * expected_err_abs self.assertTrue( torch.allclose( abs_depth_fix_diff, expected_err_abs * torch.ones_like(abs_depth_fix_diff), atol=1e-4, ) ) self.assertTrue( torch.allclose( mse_depth_fix_diff, expected_err_mse * torch.ones_like(mse_depth_fix_diff), atol=1e-4, ) ) def test_psnr(self): """ Compare against opencv and check that the psnr is above the minimum possible value. """ import cv2 im1 = torch.rand(100, 3, 256, 256).cuda() im1_uint8 = (im1 * 255).to(torch.uint8) im1_rounded = im1_uint8.float() / 255 for max_diff in 10 ** torch.linspace(-5, 0, 6): im2 = im1 + (torch.rand_like(im1) - 0.5) * 2 * max_diff im2 = im2.clamp(0.0, 1.0) im2_uint8 = (im2 * 255).to(torch.uint8) im2_rounded = im2_uint8.float() / 255 # check that our psnr matches the output of opencv psnr = calc_psnr(im1_rounded, im2_rounded) # some versions of cv2 can only take uint8 input psnr_cv2 = cv2.PSNR( im1_uint8.cpu().numpy(), im2_uint8.cpu().numpy(), ) self.assertAlmostEqual(float(psnr), float(psnr_cv2), delta=1e-4) # check that all PSNRs are bigger than the minimum possible PSNR max_mse = max_diff**2 min_psnr = 10 * math.log10(1.0 / max_mse) for _im1, _im2 in zip(im1, im2): _psnr = calc_psnr(_im1, _im2) self.assertGreaterEqual(float(_psnr) + 1e-6, min_psnr) def _one_sequence_test( self, seq_dataset, model, batch_indices, check_metrics=False, ): loader = torch.utils.data.DataLoader( seq_dataset, shuffle=False, batch_sampler=batch_indices, collate_fn=FrameData.collate, ) for frame_data in loader: self.assertIsNone(frame_data.frame_type) self.assertIsNotNone(frame_data.image_rgb) # override the frame_type frame_data.frame_type = [ "train_unseen", *(["train_known"] * (len(frame_data.image_rgb) - 1)), ] frame_data = dataclass_to_cuda_(frame_data) preds = model(**dataclasses.asdict(frame_data)) eval_result = eval_batch( frame_data, preds["implicitron_render"], bg_color=self.bg_color, lpips_model=self.lpips_model, ) if check_metrics: self._check_metrics( frame_data, preds["implicitron_render"], eval_result ) def _check_metrics(self, frame_data, implicitron_render, eval_result): # Make a terribly bad NVS prediction and check that this is worse # than the DBIR prediction. implicitron_render_bad = implicitron_render.clone() implicitron_render_bad.depth_render += ( torch.randn_like(implicitron_render_bad.depth_render) * 100.0 ) implicitron_render_bad.image_render += ( torch.randn_like(implicitron_render_bad.image_render) * 100.0 ) implicitron_render_bad.mask_render = ( torch.randn_like(implicitron_render_bad.mask_render) > 0.0 ).float() eval_result_bad = eval_batch( frame_data, implicitron_render_bad, bg_color=self.bg_color, lpips_model=self.lpips_model, ) lower_better = { "psnr_masked": False, "psnr_fg": False, "psnr_full_image": False, "depth_abs_fg": True, "iou": False, "rgb_l1_masked": True, "rgb_l1_fg": True, "lpips_masked": True, "lpips_full_image": True, } for metric in lower_better: m_better = eval_result[metric] m_worse = eval_result_bad[metric] if np.isnan(m_better) or np.isnan(m_worse): continue # metric is missing, i.e. NaN _assert = ( self.assertLessEqual if lower_better[metric] else self.assertGreaterEqual ) _assert(m_better, m_worse) def _get_random_batch_indices( self, seq_dataset, n_batches=2, min_batch_size=5, max_batch_size=10 ): batch_indices = [] for _ in range(n_batches): batch_size = torch.randint( low=min_batch_size, high=max_batch_size, size=(1,) ) batch_indices.append(torch.randperm(len(seq_dataset))[:batch_size]) return batch_indices def test_full_eval(self, n_sequences=5): """Test evaluation.""" # caching batch indices first to preserve RNG state seq_datasets = {} batch_indices = {} for seq in itertools.islice(self.dataset.sequence_names(), n_sequences): idx = list(self.dataset.sequence_indices_in_order(seq)) seq_dataset = torch.utils.data.Subset(self.dataset, idx) seq_datasets[seq] = seq_dataset batch_indices[seq] = self._get_random_batch_indices(seq_dataset) for model_class_type in ["ModelDBIR", "GenericModel"]: ModelClass = registry.get(ImplicitronModelBase, model_class_type) expand_args_fields(ModelClass) model = ModelClass( render_image_width=self.image_size, render_image_height=self.image_size, bg_color=self.bg_color, ) model.eval() model.cuda() for seq in itertools.islice(self.dataset.sequence_names(), n_sequences): self._one_sequence_test( seq_datasets[seq], model, batch_indices[seq], check_metrics=(model_class_type == "ModelDBIR"), )