# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np import torch from pytorch3d.implicitron.dataset.utils import ( bbox_xywh_to_xyxy, bbox_xyxy_to_xywh, clamp_box_to_image_bounds_and_round, crop_around_box, get_1d_bounds, get_bbox_from_mask, get_clamp_bbox, rescale_bbox, resize_image, ) from tests.common_testing import TestCaseMixin class TestBBox(TestCaseMixin, unittest.TestCase): def setUp(self): torch.manual_seed(42) def test_bbox_conversion(self): bbox_xywh_list = torch.LongTensor( [ [0, 0, 10, 20], [10, 20, 5, 1], [10, 20, 1, 1], [5, 4, 0, 1], ] ) for bbox_xywh in bbox_xywh_list: bbox_xyxy = bbox_xywh_to_xyxy(bbox_xywh) bbox_xywh_ = bbox_xyxy_to_xywh(bbox_xyxy) bbox_xyxy_ = bbox_xywh_to_xyxy(bbox_xywh_) self.assertClose(bbox_xywh_, bbox_xywh) self.assertClose(bbox_xyxy, bbox_xyxy_) def test_compare_to_expected(self): bbox_xywh_to_xyxy_expected = torch.LongTensor( [ [[0, 0, 10, 20], [0, 0, 10, 20]], [[10, 20, 5, 1], [10, 20, 15, 21]], [[10, 20, 1, 1], [10, 20, 11, 21]], [[5, 4, 0, 1], [5, 4, 5, 5]], ] ) for bbox_xywh, bbox_xyxy_expected in bbox_xywh_to_xyxy_expected: self.assertClose(bbox_xywh_to_xyxy(bbox_xywh), bbox_xyxy_expected) self.assertClose(bbox_xyxy_to_xywh(bbox_xyxy_expected), bbox_xywh) clamp_amnt = 3 bbox_xywh_to_xyxy_clamped_expected = torch.LongTensor( [ [[0, 0, 10, 20], [0, 0, 10, 20]], [[10, 20, 5, 1], [10, 20, 15, 20 + clamp_amnt]], [[10, 20, 1, 1], [10, 20, 10 + clamp_amnt, 20 + clamp_amnt]], [[5, 4, 0, 1], [5, 4, 5 + clamp_amnt, 4 + clamp_amnt]], ] ) for bbox_xywh, bbox_xyxy_expected in bbox_xywh_to_xyxy_clamped_expected: self.assertClose( bbox_xywh_to_xyxy(bbox_xywh, clamp_size=clamp_amnt), bbox_xyxy_expected, ) def test_mask_to_bbox(self): mask = np.array( [ [0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0], ] ).astype(np.float32) expected_bbox_xywh = [2, 1, 2, 1] bbox_xywh = get_bbox_from_mask(mask, 0.5) self.assertClose(bbox_xywh, expected_bbox_xywh) def test_crop_around_box(self): bbox = torch.LongTensor([0, 1, 2, 3]) # (x_min, y_min, x_max, y_max) image = torch.LongTensor( [ [0, 0, 10, 20], [10, 20, 5, 1], [10, 20, 1, 1], [5, 4, 0, 1], ] ) cropped = crop_around_box(image, bbox) self.assertClose(cropped, image[1:3, 0:2]) def test_clamp_box_to_image_bounds_and_round(self): bbox = torch.LongTensor([0, 1, 10, 12]) image_size = (5, 6) expected_clamped_bbox = torch.LongTensor([0, 1, image_size[1], image_size[0]]) clamped_bbox = clamp_box_to_image_bounds_and_round(bbox, image_size) self.assertClose(clamped_bbox, expected_clamped_bbox) def test_get_clamp_bbox(self): bbox_xywh = torch.LongTensor([1, 1, 4, 5]) clamped_bbox_xyxy = get_clamp_bbox(bbox_xywh, box_crop_context=2) # size multiplied by 2 and added coordinates self.assertClose(clamped_bbox_xyxy, torch.Tensor([-3, -4, 9, 11])) def test_rescale_bbox(self): bbox = torch.Tensor([0.0, 1.0, 3.0, 4.0]) original_resolution = (4, 4) new_resolution = (8, 8) # twice bigger rescaled_bbox = rescale_bbox(bbox, original_resolution, new_resolution) self.assertClose(bbox * 2, rescaled_bbox) def test_get_1d_bounds(self): array = [0, 1, 2] bounds = get_1d_bounds(array) # make nonzero 1d bounds of image self.assertClose(bounds, [1, 3]) def test_resize_image(self): image = np.random.rand(3, 300, 500) # rgb image 300x500 expected_shape = (150, 250) resized_image, scale, mask_crop = resize_image( image, image_height=expected_shape[0], image_width=expected_shape[1] ) original_shape = image.shape[-2:] expected_scale = min( expected_shape[0] / original_shape[0], expected_shape[1] / original_shape[1] ) self.assertEqual(scale, expected_scale) self.assertEqual(resized_image.shape[-2:], expected_shape) self.assertEqual(mask_crop.shape[-2:], expected_shape)