# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest from collections import defaultdict from dataclasses import dataclass from itertools import product import numpy as np import torch from pytorch3d.implicitron.dataset.data_loader_map_provider import ( DoublePoolBatchSampler, ) from pytorch3d.implicitron.dataset.dataset_base import DatasetBase from pytorch3d.implicitron.dataset.frame_data import FrameData from pytorch3d.implicitron.dataset.scene_batch_sampler import SceneBatchSampler @dataclass class MockFrameAnnotation: frame_number: int sequence_name: str = "sequence" frame_timestamp: float = 0.0 class MockDataset(DatasetBase): def __init__(self, num_seq, max_frame_gap=1): """ Makes a gap of max_frame_gap frame numbers in the middle of each sequence """ self.seq_annots = {f"seq_{i}": None for i in range(num_seq)} self._seq_to_idx = { f"seq_{i}": list(range(i * 10, i * 10 + 10)) for i in range(num_seq) } # frame numbers within sequence: [0, ..., 4, n, ..., n+4] # where n - 4 == max_frame_gap frame_nos = list(range(5)) + list(range(4 + max_frame_gap, 9 + max_frame_gap)) self.frame_annots = [ {"frame_annotation": MockFrameAnnotation(no)} for no in frame_nos * num_seq ] for seq_name, idx in self._seq_to_idx.items(): for i in idx: self.frame_annots[i]["frame_annotation"].sequence_name = seq_name def get_frame_numbers_and_timestamps(self, idxs, subset_filter=None): assert subset_filter is None out = [] for idx in idxs: frame_annotation = self.frame_annots[idx]["frame_annotation"] out.append( (frame_annotation.frame_number, frame_annotation.frame_timestamp) ) return out def __getitem__(self, index: int): fa = self.frame_annots[index]["frame_annotation"] fd = FrameData( sequence_name=fa.sequence_name, sequence_category="default_category", frame_number=torch.LongTensor([fa.frame_number]), frame_timestamp=torch.LongTensor([fa.frame_timestamp]), ) return fd class TestSceneBatchSampler(unittest.TestCase): def setUp(self): np.random.seed(42) self.dataset_overfit = MockDataset(1) def test_overfit(self): num_batches = 3 batch_size = 10 sampler = SceneBatchSampler( self.dataset_overfit, batch_size=batch_size, num_batches=num_batches, images_per_seq_options=[10], # will try to sample batch_size anyway ) self.assertEqual(len(sampler), num_batches) it = iter(sampler) for _ in range(num_batches): batch = next(it) self.assertIsNotNone(batch) self.assertEqual(len(batch), batch_size) # true for our examples self.assertTrue(all(idx // 10 == 0 for idx in batch)) with self.assertRaises(StopIteration): batch = next(it) def test_multiseq(self): for ips_options in [[10], [2], [3], [2, 3, 4]]: for sample_consecutive_frames in [True, False]: for consecutive_frames_max_gap in [0, 1, 3]: self._test_multiseq_flavour( ips_options, sample_consecutive_frames, consecutive_frames_max_gap, ) def test_multiseq_gaps(self): num_batches = 16 batch_size = 10 dataset_multiseq = MockDataset(5, max_frame_gap=3) for ips_options in [[10], [2], [3], [2, 3, 4]]: debug_info = f" Images per sequence: {ips_options}." sampler = SceneBatchSampler( dataset_multiseq, batch_size=batch_size, num_batches=num_batches, images_per_seq_options=ips_options, sample_consecutive_frames=True, consecutive_frames_max_gap=1, ) self.assertEqual(len(sampler), num_batches, msg=debug_info) it = iter(sampler) for _ in range(num_batches): batch = next(it) self.assertIsNotNone(batch, "batch is None in" + debug_info) if max(ips_options) > 5: # true for our examples self.assertEqual(len(batch), 5, msg=debug_info) else: # true for our examples self.assertEqual(len(batch), batch_size, msg=debug_info) self._check_frames_are_consecutive( batch, dataset_multiseq.frame_annots, debug_info ) def _test_multiseq_flavour( self, ips_options, sample_consecutive_frames, consecutive_frames_max_gap, num_batches=16, batch_size=10, ): debug_info = ( f" Images per sequence: {ips_options}, " f"sample_consecutive_frames: {sample_consecutive_frames}, " f"consecutive_frames_max_gap: {consecutive_frames_max_gap}, " ) # in this test, either consecutive_frames_max_gap == max_frame_gap, # or consecutive_frames_max_gap == 0, so segments consist of full sequences frame_gap = consecutive_frames_max_gap if consecutive_frames_max_gap > 0 else 3 dataset_multiseq = MockDataset(5, max_frame_gap=frame_gap) sampler = SceneBatchSampler( dataset_multiseq, batch_size=batch_size, num_batches=num_batches, images_per_seq_options=ips_options, sample_consecutive_frames=sample_consecutive_frames, consecutive_frames_max_gap=consecutive_frames_max_gap, ) self.assertEqual(len(sampler), num_batches, msg=debug_info) it = iter(sampler) typical_counts = set() for _ in range(num_batches): batch = next(it) self.assertIsNotNone(batch, "batch is None in" + debug_info) # true for our examples self.assertEqual(len(batch), batch_size, msg=debug_info) # find distribution over sequences counts = _count_by_quotient(batch, 10) freqs = _count_by_quotient(counts.values(), 1) self.assertLessEqual( len(freqs), 2, msg="We should have maximum of 2 different " "frequences of sequences in the batch." + debug_info, ) if len(freqs) == 2: most_seq_count = max(*freqs.keys()) last_seq = min(*freqs.keys()) self.assertEqual( freqs[last_seq], 1, msg="Only one odd sequence allowed." + debug_info, ) else: self.assertEqual(len(freqs), 1) most_seq_count = next(iter(freqs)) self.assertIn(most_seq_count, ips_options) typical_counts.add(most_seq_count) if sample_consecutive_frames: self._check_frames_are_consecutive( batch, dataset_multiseq.frame_annots, debug_info, max_gap=consecutive_frames_max_gap, ) self.assertTrue( all(i in typical_counts for i in ips_options), "Some of the frequency options did not occur among " f"the {num_batches} batches (could be just bad luck)." + debug_info, ) with self.assertRaises(StopIteration): batch = next(it) def _check_frames_are_consecutive(self, batch, annots, debug_info, max_gap=1): # make sure that sampled frames are consecutive for i in range(len(batch) - 1): curr_idx, next_idx = batch[i : i + 2] if curr_idx // 10 == next_idx // 10: # same sequence if max_gap > 0: curr_idx, next_idx = [ annots[idx]["frame_annotation"].frame_number for idx in (curr_idx, next_idx) ] gap = max_gap else: gap = 1 # we'll check that raw dataset indices are consecutive self.assertLessEqual(next_idx - curr_idx, gap, msg=debug_info) def _count_by_quotient(indices, divisor): counter = defaultdict(int) for i in indices: counter[i // divisor] += 1 return counter class TestRandomSampling(unittest.TestCase): def test_double_pool_batch_sampler(self): unknown_idxs = [2, 3, 4, 5, 8] known_idxs = [2, 9, 10, 11, 12, 13, 14, 15, 16, 17] for replacement, num_batches in product([True, False], [None, 4, 5, 6, 30]): with self.subTest(f"{replacement}, {num_batches}"): sampler = DoublePoolBatchSampler( first_indices=unknown_idxs, rest_indices=known_idxs, batch_size=4, replacement=replacement, num_batches=num_batches, ) for _ in range(6): epoch = list(sampler) self.assertEqual(len(epoch), num_batches or len(unknown_idxs)) for batch in epoch: self.assertEqual(len(batch), 4) self.assertIn(batch[0], unknown_idxs) for i in batch[1:]: self.assertIn(i, known_idxs) if not replacement and 4 != num_batches: self.assertEqual( {batch[0] for batch in epoch}, set(unknown_idxs) )