# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from itertools import product import torch from fvcore.common.benchmark import benchmark from tests.test_sample_points_from_meshes import TestSamplePoints def bm_sample_points() -> None: backend = ["cpu"] if torch.cuda.is_available(): backend.append("cuda:0") kwargs_list = [] num_meshes = [2, 10, 32] num_verts = [100, 1000] num_faces = [300, 3000] num_samples = [5000, 10000] test_cases = product(num_meshes, num_verts, num_faces, num_samples, backend) for case in test_cases: n, v, f, s, b = case kwargs_list.append( { "num_meshes": n, "num_verts": v, "num_faces": f, "num_samples": s, "device": b, } ) benchmark( TestSamplePoints.sample_points_with_init, "SAMPLE_MESH", kwargs_list, warmup_iters=1, ) if __name__ == "__main__": bm_sample_points()