# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """Test render speed.""" import logging import sys from os import path import torch from fvcore.common.benchmark import benchmark from pytorch3d.renderer.points.pulsar import Renderer from torch.autograd import Variable # Making sure you can run this, even if pulsar hasn't been installed yet. sys.path.insert(0, path.join(path.dirname(__file__), "..")) LOGGER = logging.getLogger(__name__) """Measure the execution speed of the rendering. This measures a very pessimistic upper bound on speed, because synchronization points have to be introduced in Python. On a pure PyTorch execution pipeline, results should be significantly faster. You can get pure CUDA timings through C++ by activating `PULSAR_TIMINGS_BATCHED_ENABLED` in the file `pytorch3d/csrc/pulsar/logging.h` or defining it for your compiler. """ def _bm_pulsar(): n_points = 1_000_000 width = 1_000 height = 1_000 renderer = Renderer(width, height, n_points) # Generate sample data. torch.manual_seed(1) vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0 vert_pos[:, 2] += 25.0 vert_pos[:, :2] -= 5.0 vert_col = torch.rand(n_points, 3, dtype=torch.float32) vert_rad = torch.rand(n_points, dtype=torch.float32) cam_params = torch.tensor( [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32 ) device = torch.device("cuda") vert_pos = vert_pos.to(device) vert_col = vert_col.to(device) vert_rad = vert_rad.to(device) cam_params = cam_params.to(device) renderer = renderer.to(device) vert_pos_var = Variable(vert_pos, requires_grad=False) vert_col_var = Variable(vert_col, requires_grad=False) vert_rad_var = Variable(vert_rad, requires_grad=False) cam_params_var = Variable(cam_params, requires_grad=False) def bm_closure(): renderer.forward( vert_pos_var, vert_col_var, vert_rad_var, cam_params_var, 1.0e-1, 45.0, percent_allowed_difference=0.01, ) torch.cuda.synchronize() return bm_closure def _bm_pulsar_backward(): n_points = 1_000_000 width = 1_000 height = 1_000 renderer = Renderer(width, height, n_points) # Generate sample data. torch.manual_seed(1) vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0 vert_pos[:, 2] += 25.0 vert_pos[:, :2] -= 5.0 vert_col = torch.rand(n_points, 3, dtype=torch.float32) vert_rad = torch.rand(n_points, dtype=torch.float32) cam_params = torch.tensor( [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32 ) device = torch.device("cuda") vert_pos = vert_pos.to(device) vert_col = vert_col.to(device) vert_rad = vert_rad.to(device) cam_params = cam_params.to(device) renderer = renderer.to(device) vert_pos_var = Variable(vert_pos, requires_grad=True) vert_col_var = Variable(vert_col, requires_grad=True) vert_rad_var = Variable(vert_rad, requires_grad=True) cam_params_var = Variable(cam_params, requires_grad=True) res = renderer.forward( vert_pos_var, vert_col_var, vert_rad_var, cam_params_var, 1.0e-1, 45.0, percent_allowed_difference=0.01, ) loss = res.sum() def bm_closure(): loss.backward(retain_graph=True) torch.cuda.synchronize() return bm_closure def bm_pulsar() -> None: if not torch.cuda.is_available(): return benchmark(_bm_pulsar, "PULSAR_FORWARD", [{}], warmup_iters=3) benchmark(_bm_pulsar_backward, "PULSAR_BACKWARD", [{}], warmup_iters=3) if __name__ == "__main__": bm_pulsar()