Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
from itertools import product | |
import torch | |
from fvcore.common.benchmark import benchmark | |
from pytorch3d.renderer.lighting import diffuse, specular | |
def _bm_diffuse_cuda_with_init(N, S, K): | |
device = torch.device("cuda") | |
normals = torch.randn(N, S, S, K, 3, device=device) | |
color = torch.randn(1, 3, device=device) | |
direction = torch.randn(N, S, S, K, 3, device=device) | |
args = (normals, color, direction) | |
torch.cuda.synchronize() | |
return lambda: diffuse(*args) | |
def _bm_specular_cuda_with_init(N, S, K): | |
device = torch.device("cuda") | |
points = torch.randn(N, S, S, K, 3, device=device) | |
normals = torch.randn(N, S, S, K, 3, device=device) | |
direction = torch.randn(N, S, S, K, 3, device=device) | |
color = torch.randn(1, 3, device=device) | |
camera_position = torch.randn(N, 3, device=device) | |
shininess = torch.randn(N, device=device) | |
args = (points, normals, direction, color, camera_position, shininess) | |
torch.cuda.synchronize() | |
return lambda: specular(*args) | |
def bm_lighting() -> None: | |
# For now only benchmark lighting on GPU | |
if not torch.cuda.is_available(): | |
return | |
kwargs_list = [] | |
Ns = [1, 8] | |
Ss = [128, 256] | |
Ks = [1, 10, 80] | |
test_cases = product(Ns, Ss, Ks) | |
for case in test_cases: | |
N, S, K = case | |
kwargs_list.append({"N": N, "S": S, "K": K}) | |
benchmark(_bm_diffuse_cuda_with_init, "DIFFUSE", kwargs_list, warmup_iters=3) | |
benchmark(_bm_specular_cuda_with_init, "SPECULAR", kwargs_list, warmup_iters=3) | |
if __name__ == "__main__": | |
bm_lighting() | |