File size: 4,624 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

"""Test right hand/left hand system compatibility."""
import sys
import unittest
from os import path

import numpy as np
import torch
from torch import nn


sys.path.insert(0, path.join(path.dirname(__file__), ".."))
devices = [torch.device("cuda"), torch.device("cpu")]


n_points = 10
width = 1_000
height = 1_000


class SceneModel(nn.Module):
    """A simple model to demonstrate use in Modules."""

    def __init__(self):
        super(SceneModel, self).__init__()
        from pytorch3d.renderer.points.pulsar import Renderer

        self.gamma = 1.0
        # Points.
        torch.manual_seed(1)
        vert_pos = torch.rand((1, n_points, 3), dtype=torch.float32) * 10.0
        vert_pos[:, :, 2] += 25.0
        vert_pos[:, :, :2] -= 5.0
        self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=False))
        self.register_parameter(
            "vert_col",
            nn.Parameter(
                torch.zeros(1, n_points, 3, dtype=torch.float32), requires_grad=True
            ),
        )
        self.register_parameter(
            "vert_rad",
            nn.Parameter(
                torch.ones(1, n_points, dtype=torch.float32) * 0.001,
                requires_grad=False,
            ),
        )
        self.register_parameter(
            "vert_opy",
            nn.Parameter(
                torch.ones(1, n_points, dtype=torch.float32), requires_grad=False
            ),
        )
        self.register_buffer(
            "cam_params",
            torch.tensor(
                [
                    [
                        np.sin(angle) * 35.0,
                        0.0,
                        30.0 - np.cos(angle) * 35.0,
                        0.0,
                        -angle,
                        0.0,
                        5.0,
                        2.0,
                    ]
                    for angle in [-1.5, -0.8, -0.4, -0.1, 0.1, 0.4, 0.8, 1.5]
                ],
                dtype=torch.float32,
            ),
        )
        self.renderer = Renderer(width, height, n_points)

    def forward(self, cam=None):
        if cam is None:
            cam = self.cam_params
            n_views = 8
        else:
            n_views = 1
        return self.renderer.forward(
            self.vert_pos.expand(n_views, -1, -1),
            self.vert_col.expand(n_views, -1, -1),
            self.vert_rad.expand(n_views, -1),
            cam,
            self.gamma,
            45.0,
            return_forward_info=True,
        )


class TestSmallSpheres(unittest.TestCase):
    """Test small sphere rendering and gradients."""

    def test_basic(self):
        for device in devices:
            # Set up model.
            model = SceneModel().to(device)
            angle = 0.0
            for _ in range(50):
                cam_control = torch.tensor(
                    [
                        [
                            np.sin(angle) * 35.0,
                            0.0,
                            30.0 - np.cos(angle) * 35.0,
                            0.0,
                            -angle,
                            0.0,
                            5.0,
                            2.0,
                        ]
                    ],
                    dtype=torch.float32,
                ).to(device)
                result, forw_info = model(cam=cam_control)
                sphere_ids = model.renderer.sphere_ids_from_result_info_nograd(
                    forw_info
                )
                # Assert all spheres are rendered.
                for idx in range(n_points):
                    self.assertTrue(
                        (sphere_ids == idx).sum() > 0, "Sphere ID %d missing!" % (idx)
                    )
                # Visualization code. Activate for debugging.
                # result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
                # cv2.imshow("res", result_im[0, :, :, ::-1])
                # cv2.waitKey(0)
                # Back-propagate some dummy gradients.
                loss = ((result - torch.ones_like(result)).abs()).sum()
                loss.backward()
                # Now check whether the gradient arrives at every sphere.
                self.assertTrue(torch.all(model.vert_col.grad[:, :, 0].abs() > 0.0))
                angle += 0.15


if __name__ == "__main__":
    unittest.main()