File size: 4,044 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

"""Tests for the orthogonal projection."""
import logging
import sys
import unittest
from os import path

import numpy as np
import torch


# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), ".."))
devices = [torch.device("cuda"), torch.device("cpu")]


class TestOrtho(unittest.TestCase):
    """Test the orthogonal projection."""

    def test_basic(self):
        """Basic forward test of the orthogonal projection."""
        from pytorch3d.renderer.points.pulsar import Renderer

        n_points = 10
        width = 1000
        height = 1000
        renderer_left = Renderer(
            width,
            height,
            n_points,
            right_handed_system=False,
            orthogonal_projection=True,
        )
        renderer_right = Renderer(
            width,
            height,
            n_points,
            right_handed_system=True,
            orthogonal_projection=True,
        )
        # Generate sample data.
        torch.manual_seed(1)
        vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
        vert_pos[:, 2] += 25.0
        vert_pos[:, :2] -= 5.0
        vert_pos_neg = vert_pos.clone()
        vert_pos_neg[:, 2] *= -1.0
        vert_col = torch.rand(n_points, 3, dtype=torch.float32)
        vert_rad = torch.rand(n_points, dtype=torch.float32)
        cam_params = torch.tensor(
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 20.0], dtype=torch.float32
        )
        for device in devices:
            vert_pos = vert_pos.to(device)
            vert_pos_neg = vert_pos_neg.to(device)
            vert_col = vert_col.to(device)
            vert_rad = vert_rad.to(device)
            cam_params = cam_params.to(device)
            renderer_left = renderer_left.to(device)
            renderer_right = renderer_right.to(device)
            result_left = (
                renderer_left.forward(
                    vert_pos,
                    vert_col,
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                )
                .cpu()
                .detach()
                .numpy()
            )
            hits_left = (
                renderer_left.forward(
                    vert_pos,
                    vert_col,
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                    mode=1,
                )
                .cpu()
                .detach()
                .numpy()
            )
            result_right = (
                renderer_right.forward(
                    vert_pos_neg,
                    vert_col,
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                )
                .cpu()
                .detach()
                .numpy()
            )
            hits_right = (
                renderer_right.forward(
                    vert_pos_neg,
                    vert_col,
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                    mode=1,
                )
                .cpu()
                .detach()
                .numpy()
            )
            self.assertTrue(np.allclose(result_left, result_right))
            self.assertTrue(np.allclose(hits_left, hits_right))


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    logging.getLogger("pulsar.renderer").setLevel(logging.WARN)
    unittest.main()