Spaces:
Running
Running
File size: 4,044 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""Tests for the orthogonal projection."""
import logging
import sys
import unittest
from os import path
import numpy as np
import torch
# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), ".."))
devices = [torch.device("cuda"), torch.device("cpu")]
class TestOrtho(unittest.TestCase):
"""Test the orthogonal projection."""
def test_basic(self):
"""Basic forward test of the orthogonal projection."""
from pytorch3d.renderer.points.pulsar import Renderer
n_points = 10
width = 1000
height = 1000
renderer_left = Renderer(
width,
height,
n_points,
right_handed_system=False,
orthogonal_projection=True,
)
renderer_right = Renderer(
width,
height,
n_points,
right_handed_system=True,
orthogonal_projection=True,
)
# Generate sample data.
torch.manual_seed(1)
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_pos_neg = vert_pos.clone()
vert_pos_neg[:, 2] *= -1.0
vert_col = torch.rand(n_points, 3, dtype=torch.float32)
vert_rad = torch.rand(n_points, dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 20.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_pos_neg = vert_pos_neg.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer_left = renderer_left.to(device)
renderer_right = renderer_right.to(device)
result_left = (
renderer_left.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
.cpu()
.detach()
.numpy()
)
hits_left = (
renderer_left.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
.cpu()
.detach()
.numpy()
)
result_right = (
renderer_right.forward(
vert_pos_neg,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
.cpu()
.detach()
.numpy()
)
hits_right = (
renderer_right.forward(
vert_pos_neg,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
.cpu()
.detach()
.numpy()
)
self.assertTrue(np.allclose(result_left, result_right))
self.assertTrue(np.allclose(hits_left, hits_right))
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
logging.getLogger("pulsar.renderer").setLevel(logging.WARN)
unittest.main()
|