File size: 10,542 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import contextlib
import gzip
import os
import unittest
from typing import List

import numpy as np
import torch

from pytorch3d.implicitron.dataset import types
from pytorch3d.implicitron.dataset.dataset_base import FrameData
from pytorch3d.implicitron.dataset.frame_data import FrameDataBuilder
from pytorch3d.implicitron.dataset.utils import (
    get_bbox_from_mask,
    load_16big_png_depth,
    load_1bit_png_mask,
    load_depth,
    load_depth_mask,
    load_image,
    load_mask,
    safe_as_tensor,
    transpose_normalize_image,
)
from pytorch3d.implicitron.tools.config import get_default_args
from pytorch3d.renderer.cameras import PerspectiveCameras

from tests.common_testing import TestCaseMixin
from tests.implicitron.common_resources import get_skateboard_data


class TestFrameDataBuilder(TestCaseMixin, unittest.TestCase):
    def setUp(self):
        torch.manual_seed(42)

        category = "skateboard"
        stack = contextlib.ExitStack()
        self.dataset_root, self.path_manager = stack.enter_context(
            get_skateboard_data()
        )
        self.addCleanup(stack.close)
        self.image_height = 768
        self.image_width = 512

        self.frame_data_builder = FrameDataBuilder(
            image_height=self.image_height,
            image_width=self.image_width,
            dataset_root=self.dataset_root,
            path_manager=self.path_manager,
        )

        # loading single frame annotation of dataset (see JsonIndexDataset._load_frames())
        frame_file = os.path.join(self.dataset_root, category, "frame_annotations.jgz")
        local_file = self.path_manager.get_local_path(frame_file)
        with gzip.open(local_file, "rt", encoding="utf8") as zipfile:
            frame_annots_list = types.load_dataclass(
                zipfile, List[types.FrameAnnotation]
            )
            self.frame_annotation = frame_annots_list[0]

        sequence_annotations_file = os.path.join(
            self.dataset_root, category, "sequence_annotations.jgz"
        )
        local_file = self.path_manager.get_local_path(sequence_annotations_file)
        with gzip.open(local_file, "rt", encoding="utf8") as zipfile:
            seq_annots_list = types.load_dataclass(
                zipfile, List[types.SequenceAnnotation]
            )
            seq_annots = {entry.sequence_name: entry for entry in seq_annots_list}
            self.seq_annotation = seq_annots[self.frame_annotation.sequence_name]

        point_cloud = self.seq_annotation.point_cloud
        self.frame_data = FrameData(
            frame_number=safe_as_tensor(self.frame_annotation.frame_number, torch.long),
            frame_timestamp=safe_as_tensor(
                self.frame_annotation.frame_timestamp, torch.float
            ),
            sequence_name=self.frame_annotation.sequence_name,
            sequence_category=self.seq_annotation.category,
            camera_quality_score=safe_as_tensor(
                self.seq_annotation.viewpoint_quality_score, torch.float
            ),
            point_cloud_quality_score=(
                safe_as_tensor(point_cloud.quality_score, torch.float)
                if point_cloud is not None
                else None
            ),
        )

    def test_frame_data_builder_args(self):
        # test that FrameDataBuilder works with get_default_args
        get_default_args(FrameDataBuilder)

    def test_fix_point_cloud_path(self):
        """Some files in Co3Dv2 have an accidental absolute path stored."""
        original_path = "some_file_path"
        modified_path = self.frame_data_builder._fix_point_cloud_path(original_path)
        self.assertIn(original_path, modified_path)
        self.assertIn(self.frame_data_builder.dataset_root, modified_path)

    def test_load_and_adjust_frame_data(self):
        self.frame_data.image_size_hw = safe_as_tensor(
            self.frame_annotation.image.size, torch.long
        )
        self.frame_data.effective_image_size_hw = self.frame_data.image_size_hw

        fg_mask_np, mask_path = self.frame_data_builder._load_fg_probability(
            self.frame_annotation
        )
        self.frame_data.mask_path = mask_path
        self.frame_data.fg_probability = safe_as_tensor(fg_mask_np, torch.float)
        mask_thr = self.frame_data_builder.box_crop_mask_thr
        bbox_xywh = get_bbox_from_mask(fg_mask_np, mask_thr)
        self.frame_data.bbox_xywh = safe_as_tensor(bbox_xywh, torch.long)

        self.assertIsNotNone(self.frame_data.mask_path)
        self.assertTrue(torch.is_tensor(self.frame_data.fg_probability))
        self.assertTrue(torch.is_tensor(self.frame_data.bbox_xywh))
        # assert bboxes shape
        self.assertEqual(self.frame_data.bbox_xywh.shape, torch.Size([4]))

        image_path = os.path.join(
            self.frame_data_builder.dataset_root, self.frame_annotation.image.path
        )
        image_np = load_image(self.frame_data_builder._local_path(image_path))
        self.assertIsInstance(image_np, np.ndarray)
        self.frame_data.image_rgb = self.frame_data_builder._postprocess_image(
            image_np, self.frame_annotation.image.size, self.frame_data.fg_probability
        )
        self.assertIsInstance(self.frame_data.image_rgb, torch.Tensor)

        (
            self.frame_data.depth_map,
            depth_path,
            self.frame_data.depth_mask,
        ) = self.frame_data_builder._load_mask_depth(
            self.frame_annotation,
            self.frame_data.fg_probability,
        )
        self.assertTrue(torch.is_tensor(self.frame_data.depth_map))
        self.assertIsNotNone(depth_path)
        self.assertTrue(torch.is_tensor(self.frame_data.depth_mask))

        new_size = (self.image_height, self.image_width)

        if self.frame_data_builder.box_crop:
            self.frame_data.crop_by_metadata_bbox_(
                self.frame_data_builder.box_crop_context,
            )

        # assert image and mask shapes after resize
        self.frame_data.resize_frame_(
            new_size_hw=torch.tensor(new_size, dtype=torch.long),
        )
        self.assertEqual(
            self.frame_data.mask_crop.shape,
            torch.Size([1, self.image_height, self.image_width]),
        )
        self.assertEqual(
            self.frame_data.image_rgb.shape,
            torch.Size([3, self.image_height, self.image_width]),
        )
        self.assertEqual(
            self.frame_data.mask_crop.shape,
            torch.Size([1, self.image_height, self.image_width]),
        )
        self.assertEqual(
            self.frame_data.fg_probability.shape,
            torch.Size([1, self.image_height, self.image_width]),
        )
        self.assertEqual(
            self.frame_data.depth_map.shape,
            torch.Size([1, self.image_height, self.image_width]),
        )
        self.assertEqual(
            self.frame_data.depth_mask.shape,
            torch.Size([1, self.image_height, self.image_width]),
        )
        self.frame_data.camera = self.frame_data_builder._get_pytorch3d_camera(
            self.frame_annotation,
        )
        self.assertEqual(type(self.frame_data.camera), PerspectiveCameras)

    def test_transpose_normalize_image(self):
        def inverse_transpose_normalize_image(image: np.ndarray) -> np.ndarray:
            im = image * 255.0
            return im.transpose((1, 2, 0)).astype(np.uint8)

        # Test 2D input
        input_image = np.array(
            [[10, 20, 30], [40, 50, 60], [70, 80, 90]], dtype=np.uint8
        )
        expected_input = inverse_transpose_normalize_image(
            transpose_normalize_image(input_image)
        )
        self.assertClose(input_image[..., None], expected_input)

        # Test 3D input
        input_image = np.array(
            [
                [[10, 20, 30], [40, 50, 60], [70, 80, 90]],
                [[100, 110, 120], [130, 140, 150], [160, 170, 180]],
                [[190, 200, 210], [220, 230, 240], [250, 255, 255]],
            ],
            dtype=np.uint8,
        )
        expected_input = inverse_transpose_normalize_image(
            transpose_normalize_image(input_image)
        )
        self.assertClose(input_image, expected_input)

    def test_load_image(self):
        path = os.path.join(self.dataset_root, self.frame_annotation.image.path)
        local_path = self.path_manager.get_local_path(path)
        image = load_image(local_path)
        self.assertEqual(image.dtype, np.float32)
        self.assertLessEqual(np.max(image), 1.0)
        self.assertGreaterEqual(np.min(image), 0.0)

    def test_load_mask(self):
        path = os.path.join(self.dataset_root, self.frame_annotation.mask.path)
        path = self.path_manager.get_local_path(path)
        mask = load_mask(path)
        self.assertEqual(mask.dtype, np.float32)
        self.assertLessEqual(np.max(mask), 1.0)
        self.assertGreaterEqual(np.min(mask), 0.0)

    def test_load_depth(self):
        path = os.path.join(self.dataset_root, self.frame_annotation.depth.path)
        path = self.path_manager.get_local_path(path)
        depth_map = load_depth(path, self.frame_annotation.depth.scale_adjustment)
        self.assertEqual(depth_map.dtype, np.float32)
        self.assertEqual(len(depth_map.shape), 3)

    def test_load_16big_png_depth(self):
        path = os.path.join(self.dataset_root, self.frame_annotation.depth.path)
        path = self.path_manager.get_local_path(path)
        depth_map = load_16big_png_depth(path)
        self.assertEqual(depth_map.dtype, np.float32)
        self.assertEqual(len(depth_map.shape), 2)

    def test_load_1bit_png_mask(self):
        mask_path = os.path.join(
            self.dataset_root, self.frame_annotation.depth.mask_path
        )
        mask_path = self.path_manager.get_local_path(mask_path)
        mask = load_1bit_png_mask(mask_path)
        self.assertEqual(mask.dtype, np.float32)
        self.assertEqual(len(mask.shape), 2)

    def test_load_depth_mask(self):
        mask_path = os.path.join(
            self.dataset_root, self.frame_annotation.depth.mask_path
        )
        mask_path = self.path_manager.get_local_path(mask_path)
        mask = load_depth_mask(mask_path)
        self.assertEqual(mask.dtype, np.float32)
        self.assertEqual(len(mask.shape), 3)