File size: 7,152 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.


import contextlib
import copy
import os
import unittest

import torch
import torchvision
from pytorch3d.implicitron.dataset.json_index_dataset import JsonIndexDataset
from pytorch3d.implicitron.dataset.visualize import get_implicitron_sequence_pointcloud
from pytorch3d.implicitron.tools.config import expand_args_fields
from pytorch3d.implicitron.tools.point_cloud_utils import render_point_cloud_pytorch3d
from pytorch3d.vis.plotly_vis import plot_scene


if os.environ.get("INSIDE_RE_WORKER") is None:
    from visdom import Visdom

from tests.common_testing import interactive_testing_requested

from .common_resources import get_skateboard_data

VISDOM_PORT = int(os.environ.get("VISDOM_PORT", 8097))


class TestDatasetVisualize(unittest.TestCase):
    def setUp(self):
        if not interactive_testing_requested():
            return
        category = "skateboard"
        stack = contextlib.ExitStack()
        dataset_root, path_manager = stack.enter_context(get_skateboard_data())
        self.addCleanup(stack.close)
        frame_file = os.path.join(dataset_root, category, "frame_annotations.jgz")
        sequence_file = os.path.join(dataset_root, category, "sequence_annotations.jgz")
        self.image_size = 256
        expand_args_fields(JsonIndexDataset)
        self.datasets = {
            "simple": JsonIndexDataset(
                frame_annotations_file=frame_file,
                sequence_annotations_file=sequence_file,
                dataset_root=dataset_root,
                image_height=self.image_size,
                image_width=self.image_size,
                box_crop=True,
                load_point_clouds=True,
                path_manager=path_manager,
            ),
            "nonsquare": JsonIndexDataset(
                frame_annotations_file=frame_file,
                sequence_annotations_file=sequence_file,
                dataset_root=dataset_root,
                image_height=self.image_size,
                image_width=self.image_size // 2,
                box_crop=True,
                load_point_clouds=True,
                path_manager=path_manager,
            ),
            "nocrop": JsonIndexDataset(
                frame_annotations_file=frame_file,
                sequence_annotations_file=sequence_file,
                dataset_root=dataset_root,
                image_height=self.image_size,
                image_width=self.image_size // 2,
                box_crop=False,
                load_point_clouds=True,
                path_manager=path_manager,
            ),
        }
        self.datasets.update(
            {
                k + "_newndc": _change_annotations_to_new_ndc(dataset)
                for k, dataset in self.datasets.items()
            }
        )
        self.visdom = Visdom(port=VISDOM_PORT)
        if not self.visdom.check_connection():
            print("Visdom server not running! Disabling visdom visualizations.")
            self.visdom = None

    def _render_one_pointcloud(self, point_cloud, cameras, render_size):
        (_image_render, _, _) = render_point_cloud_pytorch3d(
            cameras,
            point_cloud,
            render_size=render_size,
            point_radius=1e-2,
            topk=10,
            bg_color=0.0,
        )
        return _image_render.clamp(0.0, 1.0)

    def test_one(self):
        """Test dataset visualization."""
        if not interactive_testing_requested():
            return
        for max_frames in (16, -1):
            for load_dataset_point_cloud in (True, False):
                for dataset_key in self.datasets:
                    self._gen_and_render_pointcloud(
                        max_frames, load_dataset_point_cloud, dataset_key
                    )

    def _gen_and_render_pointcloud(
        self, max_frames, load_dataset_point_cloud, dataset_key
    ):
        dataset = self.datasets[dataset_key]
        # load the point cloud of the first sequence
        sequence_show = list(dataset.seq_annots.keys())[0]
        device = torch.device("cuda:0")

        point_cloud, sequence_frame_data = get_implicitron_sequence_pointcloud(
            dataset,
            sequence_name=sequence_show,
            mask_points=True,
            max_frames=max_frames,
            num_workers=10,
            load_dataset_point_cloud=load_dataset_point_cloud,
        )

        # render on gpu
        point_cloud = point_cloud.to(device)
        cameras = sequence_frame_data.camera.to(device)

        # render the point_cloud from the viewpoint of loaded cameras
        images_render = torch.cat(
            [
                self._render_one_pointcloud(
                    point_cloud,
                    cameras[frame_i],
                    (
                        dataset.image_height,
                        dataset.image_width,
                    ),
                )
                for frame_i in range(len(cameras))
            ]
        ).cpu()
        images_gt_and_render = torch.cat(
            [sequence_frame_data.image_rgb, images_render], dim=3
        )

        imfile = os.path.join(
            os.path.split(os.path.abspath(__file__))[0],
            "test_dataset_visualize"
            + f"_max_frames={max_frames}"
            + f"_load_pcl={load_dataset_point_cloud}.png",
        )
        print(f"Exporting image {imfile}.")
        torchvision.utils.save_image(images_gt_and_render, imfile, nrow=2)

        if self.visdom is not None:
            test_name = f"{max_frames}_{load_dataset_point_cloud}_{dataset_key}"
            self.visdom.images(
                images_gt_and_render,
                env="test_dataset_visualize",
                win=f"pcl_renders_{test_name}",
                opts={"title": f"pcl_renders_{test_name}"},
            )
            plotlyplot = plot_scene(
                {
                    "scene_batch": {
                        "cameras": cameras,
                        "point_cloud": point_cloud,
                    }
                },
                camera_scale=1.0,
                pointcloud_max_points=10000,
                pointcloud_marker_size=1.0,
            )
            self.visdom.plotlyplot(
                plotlyplot,
                env="test_dataset_visualize",
                win=f"pcl_{test_name}",
            )


def _change_annotations_to_new_ndc(dataset):
    dataset = copy.deepcopy(dataset)
    for frame in dataset.frame_annots:
        vp = frame["frame_annotation"].viewpoint
        vp.intrinsics_format = "ndc_isotropic"
        # this assume the focal length to be equal on x and y (ok for a test)
        max_flength = max(vp.focal_length)
        vp.principal_point = (
            vp.principal_point[0] * max_flength / vp.focal_length[0],
            vp.principal_point[1] * max_flength / vp.focal_length[1],
        )
        vp.focal_length = (
            max_flength,
            max_flength,
        )

    return dataset