Spaces:
Running
Running
File size: 24,490 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "_Ip8kp4TfBLZ"
},
"outputs": [],
"source": [
"# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved."
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "kuXHJv44fBLe"
},
"source": [
"# Render a textured mesh\n",
"\n",
"This tutorial shows how to:\n",
"- load a mesh and textures from an `.obj` file. \n",
"- set up a renderer \n",
"- render the mesh \n",
"- vary the rendering settings such as lighting and camera position\n",
"- use the batching features of the pytorch3d API to render the mesh from different viewpoints"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Bnj3THhzfBLf"
},
"source": [
"## 0. Install and Import modules"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "okLalbR_g7NS"
},
"source": [
"Ensure `torch` and `torchvision` are installed. If `pytorch3d` is not installed, install it using the following cell:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 717
},
"colab_type": "code",
"id": "musUWTglgxSB",
"outputId": "16d1a1b2-3f7f-43ed-ca28-a4d236cc0572"
},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "nX99zdoffBLg"
},
"outputs": [],
"source": [
"import os\n",
"import torch\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Util function for loading meshes\n",
"from pytorch3d.io import load_objs_as_meshes, load_obj\n",
"\n",
"# Data structures and functions for rendering\n",
"from pytorch3d.structures import Meshes\n",
"from pytorch3d.vis.plotly_vis import AxisArgs, plot_batch_individually, plot_scene\n",
"from pytorch3d.vis.texture_vis import texturesuv_image_matplotlib\n",
"from pytorch3d.renderer import (\n",
" look_at_view_transform,\n",
" FoVPerspectiveCameras, \n",
" PointLights, \n",
" DirectionalLights, \n",
" Materials, \n",
" RasterizationSettings, \n",
" MeshRenderer, \n",
" MeshRasterizer, \n",
" SoftPhongShader,\n",
" TexturesUV,\n",
" TexturesVertex\n",
")\n",
"\n",
"# add path for demo utils functions \n",
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(''))"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Lxmehq6Zhrzv"
},
"source": [
"If using **Google Colab**, fetch the utils file for plotting image grids:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 204
},
"colab_type": "code",
"id": "HZozr3Pmho-5",
"outputId": "be5eb60d-5f65-4db1-cca0-44ee68c8f5fd"
},
"outputs": [],
"source": [
"!wget https://raw.githubusercontent.com/facebookresearch/pytorch3d/main/docs/tutorials/utils/plot_image_grid.py\n",
"from plot_image_grid import image_grid"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "g4B62MzYiJUM"
},
"source": [
"OR if running **locally** uncomment and run the following cell:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "paJ4Im8ahl7O"
},
"outputs": [],
"source": [
"# from utils import image_grid"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "5jGq772XfBLk"
},
"source": [
"### 1. Load a mesh and texture file\n",
"\n",
"Load an `.obj` file and its associated `.mtl` file and create a **Textures** and **Meshes** object. \n",
"\n",
"**Meshes** is a unique datastructure provided in PyTorch3D for working with batches of meshes of different sizes. \n",
"\n",
"**TexturesUV** is an auxiliary datastructure for storing vertex uv and texture maps for meshes. \n",
"\n",
"**Meshes** has several class methods which are used throughout the rendering pipeline."
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "a8eU4zo5jd_H"
},
"source": [
"If running this notebook using **Google Colab**, run the following cell to fetch the mesh obj and texture files and save it at the path `data/cow_mesh`:\n",
"If running locally, the data is already available at the correct path. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 578
},
"colab_type": "code",
"id": "tTm0cVuOjb1W",
"outputId": "6cd7e2ec-65e1-4dcc-99e8-c347bc504f0a"
},
"outputs": [],
"source": [
"!mkdir -p data/cow_mesh\n",
"!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.obj\n",
"!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.mtl\n",
"!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow_texture.png"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "gi5Kd0GafBLl"
},
"outputs": [],
"source": [
"# Setup\n",
"if torch.cuda.is_available():\n",
" device = torch.device(\"cuda:0\")\n",
" torch.cuda.set_device(device)\n",
"else:\n",
" device = torch.device(\"cpu\")\n",
"\n",
"# Set paths\n",
"DATA_DIR = \"./data\"\n",
"obj_filename = os.path.join(DATA_DIR, \"cow_mesh/cow.obj\")\n",
"\n",
"# Load obj file\n",
"mesh = load_objs_as_meshes([obj_filename], device=device)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "5APAQs6-fBLp"
},
"source": [
"#### Let's visualize the texture map"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 428
},
"colab_type": "code",
"id": "YipUhrIHfBLq",
"outputId": "48987b1d-5cc1-4c2a-cb3c-713d64f6a38d"
},
"outputs": [],
"source": [
"plt.figure(figsize=(7,7))\n",
"texture_image=mesh.textures.maps_padded()\n",
"plt.imshow(texture_image.squeeze().cpu().numpy())\n",
"plt.axis(\"off\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"PyTorch3D has a built-in way to view the texture map with matplotlib along with the points on the map corresponding to vertices. There is also a method, texturesuv_image_PIL, to get a similar image which can be saved to a file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(7,7))\n",
"texturesuv_image_matplotlib(mesh.textures, subsample=None)\n",
"plt.axis(\"off\");"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "GcnG6XJ6fBLu"
},
"source": [
"## 2. Create a renderer\n",
"\n",
"A renderer in PyTorch3D is composed of a **rasterizer** and a **shader** which each have a number of subcomponents such as a **camera** (orthographic/perspective). Here we initialize some of these components and use default values for the rest.\n",
"\n",
"In this example we will first create a **renderer** which uses a **perspective camera**, a **point light** and applies **Phong shading**. Then we learn how to vary different components using the modular API. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "dX466mWnfBLv"
},
"outputs": [],
"source": [
"# Initialize a camera.\n",
"# With world coordinates +Y up, +X left and +Z in, the front of the cow is facing the -Z direction. \n",
"# So we move the camera by 180 in the azimuth direction so it is facing the front of the cow. \n",
"R, T = look_at_view_transform(2.7, 0, 180) \n",
"cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
"\n",
"# Define the settings for rasterization and shading. Here we set the output image to be of size\n",
"# 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1\n",
"# and blur_radius=0.0. We also set bin_size and max_faces_per_bin to None which ensure that \n",
"# the faster coarse-to-fine rasterization method is used. Refer to rasterize_meshes.py for \n",
"# explanations of these parameters. Refer to docs/notes/renderer.md for an explanation of \n",
"# the difference between naive and coarse-to-fine rasterization. \n",
"raster_settings = RasterizationSettings(\n",
" image_size=512, \n",
" blur_radius=0.0, \n",
" faces_per_pixel=1, \n",
")\n",
"\n",
"# Place a point light in front of the object. As mentioned above, the front of the cow is facing the \n",
"# -z direction. \n",
"lights = PointLights(device=device, location=[[0.0, 0.0, -3.0]])\n",
"\n",
"# Create a Phong renderer by composing a rasterizer and a shader. The textured Phong shader will \n",
"# interpolate the texture uv coordinates for each vertex, sample from a texture image and \n",
"# apply the Phong lighting model\n",
"renderer = MeshRenderer(\n",
" rasterizer=MeshRasterizer(\n",
" cameras=cameras, \n",
" raster_settings=raster_settings\n",
" ),\n",
" shader=SoftPhongShader(\n",
" device=device, \n",
" cameras=cameras,\n",
" lights=lights\n",
" )\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "KyOY5qXvfBLz"
},
"source": [
"## 3. Render the mesh"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "8VkRA4qJfBL0"
},
"source": [
"The light is in front of the object so it is bright and the image has specular highlights."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 592
},
"colab_type": "code",
"id": "gBLZH8iUfBL1",
"outputId": "cc3cd3f0-189e-4497-ce47-e64b4da542e8"
},
"outputs": [],
"source": [
"images = renderer(mesh)\n",
"plt.figure(figsize=(10, 10))\n",
"plt.imshow(images[0, ..., :3].cpu().numpy())\n",
"plt.axis(\"off\");"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "k161XF3sfBL5"
},
"source": [
"## 4. Move the light behind the object and re-render\n",
"\n",
"We can pass arbitrary keyword arguments to the `rasterizer`/`shader` via the call to the `renderer` so the renderer does not need to be reinitialized if any of the settings change/\n",
"\n",
"In this case, we can simply update the location of the lights and pass them into the call to the renderer. \n",
"\n",
"The image is now dark as there is only ambient lighting, and there are no specular highlights."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "BdWkkeibfBL6"
},
"outputs": [],
"source": [
"# Now move the light so it is on the +Z axis which will be behind the cow. \n",
"lights.location = torch.tensor([0.0, 0.0, +1.0], device=device)[None]\n",
"images = renderer(mesh, lights=lights)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 592
},
"colab_type": "code",
"id": "UmV3j1YffBL9",
"outputId": "2e8edca0-5bd8-4a2f-a160-83c4b0520123"
},
"outputs": [],
"source": [
"plt.figure(figsize=(10, 10))\n",
"plt.imshow(images[0, ..., :3].cpu().numpy())\n",
"plt.axis(\"off\");"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "t93aVotMfBMB"
},
"source": [
"## 5. Rotate the object, modify the material properties or light properties\n",
"\n",
"We can also change many other settings in the rendering pipeline. Here we:\n",
"\n",
"- change the **viewing angle** of the camera\n",
"- change the **position** of the point light\n",
"- change the **material reflectance** properties of the mesh"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "4mYXYziefBMB"
},
"outputs": [],
"source": [
"# Rotate the object by increasing the elevation and azimuth angles\n",
"R, T = look_at_view_transform(dist=2.7, elev=10, azim=-150)\n",
"cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
"\n",
"# Move the light location so the light is shining on the cow's face. \n",
"lights.location = torch.tensor([[2.0, 2.0, -2.0]], device=device)\n",
"\n",
"# Change specular color to green and change material shininess \n",
"materials = Materials(\n",
" device=device,\n",
" specular_color=[[0.0, 1.0, 0.0]],\n",
" shininess=10.0\n",
")\n",
"\n",
"# Re render the mesh, passing in keyword arguments for the modified components.\n",
"images = renderer(mesh, lights=lights, materials=materials, cameras=cameras)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 592
},
"colab_type": "code",
"id": "rHIxIfh5fBME",
"outputId": "1ca2d337-2983-478f-b3c9-d64b84ba1a31"
},
"outputs": [],
"source": [
"plt.figure(figsize=(10, 10))\n",
"plt.imshow(images[0, ..., :3].cpu().numpy())\n",
"plt.axis(\"off\");"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "17c4xmtyfBMH"
},
"source": [
"## 6. Batched Rendering\n",
"\n",
"One of the core design choices of the PyTorch3D API is to support **batched inputs for all components**. \n",
"The renderer and associated components can take batched inputs and **render a batch of output images in one forward pass**. We will now use this feature to render the mesh from many different viewpoints.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "CDQKebNNfBMI"
},
"outputs": [],
"source": [
"# Set batch size - this is the number of different viewpoints from which we want to render the mesh.\n",
"batch_size = 20\n",
"\n",
"# Create a batch of meshes by repeating the cow mesh and associated textures. \n",
"# Meshes has a useful `extend` method which allows us do this very easily. \n",
"# This also extends the textures. \n",
"meshes = mesh.extend(batch_size)\n",
"\n",
"# Get a batch of viewing angles. \n",
"elev = torch.linspace(0, 180, batch_size)\n",
"azim = torch.linspace(-180, 180, batch_size)\n",
"\n",
"# All the cameras helper methods support mixed type inputs and broadcasting. So we can \n",
"# view the camera from the same distance and specify dist=2.7 as a float,\n",
"# and then specify elevation and azimuth angles for each viewpoint as tensors. \n",
"R, T = look_at_view_transform(dist=2.7, elev=elev, azim=azim)\n",
"cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
"\n",
"# Move the light back in front of the cow which is facing the -z direction.\n",
"lights.location = torch.tensor([[0.0, 0.0, -3.0]], device=device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "gyYJCwEDfBML"
},
"outputs": [],
"source": [
"# We can pass arbitrary keyword arguments to the rasterizer/shader via the renderer\n",
"# so the renderer does not need to be reinitialized if any of the settings change.\n",
"images = renderer(meshes, cameras=cameras, lights=lights)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"image_grid(images.cpu().numpy(), rows=4, cols=5, rgb=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 7. Plotly visualization \n",
"If you only want to visualize a mesh, you don't really need to use a differentiable renderer - instead we support plotting of Meshes with plotly. For these Meshes, we use TexturesVertex to define a texture for the rendering.\n",
"`plot_meshes` creates a Plotly figure with a trace for each Meshes object. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"verts, faces_idx, _ = load_obj(obj_filename)\n",
"faces = faces_idx.verts_idx\n",
"\n",
"# Initialize each vertex to be white in color.\n",
"verts_rgb = torch.ones_like(verts)[None] # (1, V, 3)\n",
"textures = TexturesVertex(verts_features=verts_rgb.to(device))\n",
"\n",
"# Create a Meshes object\n",
"mesh = Meshes(\n",
" verts=[verts.to(device)], \n",
" faces=[faces.to(device)],\n",
" textures=textures\n",
")\n",
"\n",
"# Render the plotly figure\n",
"fig = plot_scene({\n",
" \"subplot1\": {\n",
" \"cow_mesh\": mesh\n",
" }\n",
"})\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# use Plotly's default colors (no texture)\n",
"mesh = Meshes(\n",
" verts=[verts.to(device)], \n",
" faces=[faces.to(device)]\n",
")\n",
"\n",
"# Render the plotly figure\n",
"fig = plot_scene({\n",
" \"subplot1\": {\n",
" \"cow_mesh\": mesh\n",
" }\n",
"})\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# create a batch of meshes, and offset one to prevent overlap\n",
"mesh_batch = Meshes(\n",
" verts=[verts.to(device), (verts + 2).to(device)], \n",
" faces=[faces.to(device), faces.to(device)]\n",
")\n",
"\n",
"# plot mesh batch in the same trace\n",
"fig = plot_scene({\n",
" \"subplot1\": {\n",
" \"cow_mesh_batch\": mesh_batch\n",
" }\n",
"})\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot batch of meshes in different traces\n",
"fig = plot_scene({\n",
" \"subplot1\": {\n",
" \"cow_mesh1\": mesh_batch[0],\n",
" \"cow_mesh2\": mesh_batch[1]\n",
" }\n",
"})\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot batch of meshes in different subplots\n",
"fig = plot_scene({\n",
" \"subplot1\": {\n",
" \"cow_mesh1\": mesh_batch[0]\n",
" },\n",
" \"subplot2\":{\n",
" \"cow_mesh2\": mesh_batch[1]\n",
" }\n",
"})\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For batches, we can also use `plot_batch_individually` to avoid constructing the scene dictionary ourselves."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# extend the batch to have 4 meshes\n",
"mesh_4 = mesh_batch.extend(2)\n",
"\n",
"# visualize the batch in different subplots, 2 per row\n",
"fig = plot_batch_individually(mesh_4)\n",
"# we can update the figure height and width\n",
"fig.update_layout(height=1000, width=500)\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also modify the axis arguments and axis backgrounds in both functions. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig2 = plot_scene({\n",
" \"cow_plot1\": {\n",
" \"cows\": mesh_batch\n",
" }\n",
"},\n",
" xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
" yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
" zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
" axis_args=AxisArgs(showgrid=True))\n",
"fig2.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig3 = plot_batch_individually(\n",
" mesh_4, \n",
" ncols=2,\n",
" subplot_titles = [\"cow1\", \"cow2\", \"cow3\", \"cow4\"], # customize subplot titles\n",
" xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
" yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
" zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
" axis_args=AxisArgs(showgrid=True))\n",
"fig3.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "t3qphI1ElUb5"
},
"source": [
"## 8. Conclusion\n",
"In this tutorial we learnt how to **load** a textured mesh from an obj file, initialize a PyTorch3D datastructure called **Meshes**, set up an **Renderer** consisting of a **Rasterizer** and a **Shader**, and modify several components of the rendering pipeline. We also learned how to render Meshes in Plotly figures."
]
}
],
"metadata": {
"accelerator": "GPU",
"anp_metadata": {
"path": "notebooks/render_textured_meshes.ipynb"
},
"bento_stylesheets": {
"bento/extensions/flow/main.css": true,
"bento/extensions/kernel_selector/main.css": true,
"bento/extensions/kernel_ui/main.css": true,
"bento/extensions/new_kernel/main.css": true,
"bento/extensions/system_usage/main.css": true,
"bento/extensions/theme/main.css": true
},
"colab": {
"name": "render_textured_meshes.ipynb",
"provenance": []
},
"disseminate_notebook_info": {
"backup_notebook_id": "569222367081034"
},
"kernelspec": {
"display_name": "pytorch3d_etc (local)",
"language": "python",
"name": "pytorch3d_etc_local"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.5+"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|