Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ from huggingface_hub import hf_hub_download
|
|
9 |
import torch
|
10 |
from diffusers import DiffusionPipeline
|
11 |
from huggingface_hub import hf_hub_download
|
|
|
12 |
|
13 |
# Constants
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -26,7 +27,7 @@ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev",
|
|
26 |
# pipe.fuse_lora(lora_scale=0.125)
|
27 |
|
28 |
#pipe.enable_lora()
|
29 |
-
pipe.to(
|
30 |
|
31 |
def get_examples():
|
32 |
case = [
|
@@ -38,9 +39,15 @@ def get_examples():
|
|
38 |
[Image.open("metal.png"), "dragon.png","a dragon, in 3d melting gold metal",0.9, 0.5, 0, 4, 8, 8, 789385745, False,True, 2, True , "text/image guided stylzation"],
|
39 |
]
|
40 |
return case
|
41 |
-
|
42 |
-
def
|
|
|
|
|
|
|
|
|
43 |
return True
|
|
|
|
|
44 |
|
45 |
def resize_img(image, max_size=1024):
|
46 |
width, height = image.size
|
@@ -100,26 +107,43 @@ def invert_and_edit(image,
|
|
100 |
height = 1024,
|
101 |
inverted_latent_list = None,
|
102 |
do_inversion = True,
|
|
|
103 |
|
104 |
):
|
105 |
if randomize_seed:
|
106 |
seed = random.randint(0, MAX_SEED)
|
107 |
-
if
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
else:
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
try:
|
125 |
multimodal_layers = convert_string_to_list(multimodal_layers)
|
@@ -131,19 +155,20 @@ def invert_and_edit(image,
|
|
131 |
[source_prompt, edit_prompt],
|
132 |
height=1024,
|
133 |
width=1024,
|
134 |
-
guidance_scale=
|
135 |
output_type="pil",
|
136 |
num_inference_steps=num_inference_steps,
|
137 |
max_sequence_length=512,
|
138 |
-
latents=
|
139 |
inverted_latent_list=inverted_latent_list,
|
140 |
mm_copy_blocks=multimodal_layers,
|
141 |
single_copy_blocks=single_layers,
|
142 |
-
).images
|
143 |
|
144 |
# move back to cpu because of zero and gr.states
|
145 |
-
inverted_latent_list
|
146 |
-
|
|
|
147 |
|
148 |
# UI CSS
|
149 |
css = """
|
@@ -157,7 +182,8 @@ css = """
|
|
157 |
with gr.Blocks(css=css) as demo:
|
158 |
|
159 |
inverted_latents = gr.State()
|
160 |
-
do_inversion = gr.State(
|
|
|
161 |
|
162 |
with gr.Column(elem_id="col-container"):
|
163 |
gr.Markdown(f"""# Stable Flow 🌊🖌️
|
@@ -205,6 +231,9 @@ following the algorithm proposed in [*Stable Flow: Vital Layers for Training-Fre
|
|
205 |
|
206 |
with gr.Column():
|
207 |
result = gr.Image(label="Result")
|
|
|
|
|
|
|
208 |
|
209 |
with gr.Accordion("Advanced Settings", open=False):
|
210 |
|
@@ -271,10 +300,11 @@ following the algorithm proposed in [*Stable Flow: Vital Layers for Training-Fre
|
|
271 |
width,
|
272 |
height,
|
273 |
inverted_latents,
|
274 |
-
do_inversion
|
|
|
275 |
|
276 |
],
|
277 |
-
outputs=[result, inverted_latents, do_inversion, seed],
|
278 |
)
|
279 |
|
280 |
# gr.Examples(
|
@@ -284,18 +314,28 @@ following the algorithm proposed in [*Stable Flow: Vital Layers for Training-Fre
|
|
284 |
|
285 |
# )
|
286 |
|
287 |
-
input_image.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
fn=reset_do_inversion,
|
|
|
289 |
outputs=[do_inversion]
|
290 |
)
|
291 |
|
292 |
num_inversion_steps.change(
|
293 |
fn=reset_do_inversion,
|
|
|
294 |
outputs=[do_inversion]
|
295 |
)
|
296 |
|
297 |
seed.change(
|
298 |
fn=reset_do_inversion,
|
|
|
299 |
outputs=[do_inversion]
|
300 |
)
|
301 |
|
|
|
9 |
import torch
|
10 |
from diffusers import DiffusionPipeline
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
+
# from gradio_imageslider import ImageSlider
|
13 |
|
14 |
# Constants
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
27 |
# pipe.fuse_lora(lora_scale=0.125)
|
28 |
|
29 |
#pipe.enable_lora()
|
30 |
+
pipe.to(DEVICE)
|
31 |
|
32 |
def get_examples():
|
33 |
case = [
|
|
|
39 |
[Image.open("metal.png"), "dragon.png","a dragon, in 3d melting gold metal",0.9, 0.5, 0, 4, 8, 8, 789385745, False,True, 2, True , "text/image guided stylzation"],
|
40 |
]
|
41 |
return case
|
42 |
+
|
43 |
+
def reset_image_input():
|
44 |
+
return True
|
45 |
+
|
46 |
+
def reset_do_inversion(image_input):
|
47 |
+
if image_input:
|
48 |
return True
|
49 |
+
else:
|
50 |
+
return False
|
51 |
|
52 |
def resize_img(image, max_size=1024):
|
53 |
width, height = image.size
|
|
|
107 |
height = 1024,
|
108 |
inverted_latent_list = None,
|
109 |
do_inversion = True,
|
110 |
+
image_input = False,
|
111 |
|
112 |
):
|
113 |
if randomize_seed:
|
114 |
seed = random.randint(0, MAX_SEED)
|
115 |
+
if image_input:
|
116 |
+
if do_inversion:
|
117 |
+
inverted_latent_list = pipe(
|
118 |
+
source_prompt,
|
119 |
+
height=1024,
|
120 |
+
width=1024,
|
121 |
+
guidance_scale=1,
|
122 |
+
output_type="pil",
|
123 |
+
num_inference_steps=num_inversion_steps,
|
124 |
+
max_sequence_length=512,
|
125 |
+
latents=image2latent(image),
|
126 |
+
invert_image=True
|
127 |
+
)
|
128 |
+
do_inversion = False
|
129 |
+
|
130 |
+
else:
|
131 |
+
# move to gpu because of zero and gr.states
|
132 |
+
inverted_latent_list = [tensor.to(DEVICE) for tensor in inverted_latent_list]
|
133 |
+
|
134 |
+
latents = inverted_latent_list[-1].tile(2, 1, 1)
|
135 |
+
guidance_scale = [1,3]
|
136 |
+
image_input = True
|
137 |
else:
|
138 |
+
latents = torch.randn(
|
139 |
+
(4096, 64),
|
140 |
+
generator=torch.Generator(0).manual_seed(0),
|
141 |
+
dtype=torch.float16,
|
142 |
+
device=DEVICE,
|
143 |
+
).tile(2, 1, 1)
|
144 |
+
guidance_scale = 3.5
|
145 |
+
image_input = False
|
146 |
+
|
147 |
|
148 |
try:
|
149 |
multimodal_layers = convert_string_to_list(multimodal_layers)
|
|
|
155 |
[source_prompt, edit_prompt],
|
156 |
height=1024,
|
157 |
width=1024,
|
158 |
+
guidance_scale=guidance_scale,
|
159 |
output_type="pil",
|
160 |
num_inference_steps=num_inference_steps,
|
161 |
max_sequence_length=512,
|
162 |
+
latents=latents,
|
163 |
inverted_latent_list=inverted_latent_list,
|
164 |
mm_copy_blocks=multimodal_layers,
|
165 |
single_copy_blocks=single_layers,
|
166 |
+
).images
|
167 |
|
168 |
# move back to cpu because of zero and gr.states
|
169 |
+
if inverted_latent_list is not None:
|
170 |
+
inverted_latent_list = [tensor.cpu() for tensor in inverted_latent_list]
|
171 |
+
return output[0], output[1], inverted_latent_list, do_inversion, image_input, seed
|
172 |
|
173 |
# UI CSS
|
174 |
css = """
|
|
|
182 |
with gr.Blocks(css=css) as demo:
|
183 |
|
184 |
inverted_latents = gr.State()
|
185 |
+
do_inversion = gr.State(False)
|
186 |
+
image_input = gr.State(False)
|
187 |
|
188 |
with gr.Column(elem_id="col-container"):
|
189 |
gr.Markdown(f"""# Stable Flow 🌊🖌️
|
|
|
231 |
|
232 |
with gr.Column():
|
233 |
result = gr.Image(label="Result")
|
234 |
+
# with gr.Column():
|
235 |
+
# with gr.Group():
|
236 |
+
# result = ImageSlider(position=0.5)
|
237 |
|
238 |
with gr.Accordion("Advanced Settings", open=False):
|
239 |
|
|
|
300 |
width,
|
301 |
height,
|
302 |
inverted_latents,
|
303 |
+
do_inversion,
|
304 |
+
image_input
|
305 |
|
306 |
],
|
307 |
+
outputs=[input_image, result, inverted_latents, do_inversion, image_input, seed],
|
308 |
)
|
309 |
|
310 |
# gr.Examples(
|
|
|
314 |
|
315 |
# )
|
316 |
|
317 |
+
input_image.input(fn=reset_image_input,
|
318 |
+
outputs=[image_input]).then(
|
319 |
+
fn=reset_do_inversion,
|
320 |
+
inputs = [image_input],
|
321 |
+
outputs=[do_inversion]
|
322 |
+
)
|
323 |
+
|
324 |
+
source_prompt.change(
|
325 |
fn=reset_do_inversion,
|
326 |
+
inputs = [image_input],
|
327 |
outputs=[do_inversion]
|
328 |
)
|
329 |
|
330 |
num_inversion_steps.change(
|
331 |
fn=reset_do_inversion,
|
332 |
+
inputs = [image_input],
|
333 |
outputs=[do_inversion]
|
334 |
)
|
335 |
|
336 |
seed.change(
|
337 |
fn=reset_do_inversion,
|
338 |
+
inputs = [image_input],
|
339 |
outputs=[do_inversion]
|
340 |
)
|
341 |
|