# import streamlit as st # import json # import pandas as pd # import plotly.express as px # import requests # from datetime import datetime # import plotly.graph_objects as go # import os # import logging # # Configure the main page # st.set_page_config( # page_title="Energy Data Analysis Dashboard", # page_icon="⚡", # layout="wide", # initial_sidebar_state="expanded" # ) # #DEFAULT_TOKEN = os.getenv('NILM_API_TOKEN', '') # DEFAULT_TOKEN = 'p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ' # print(DEFAULT_TOKEN) # logger = logging.getLogger("Data cellar demo") # logger.info(f"token : {DEFAULT_TOKEN}") # # Initialize session state variables # if 'api_token' not in st.session_state: # st.session_state.api_token = DEFAULT_TOKEN # if 'current_file' not in st.session_state: # st.session_state.current_file = None # if 'json_data' not in st.session_state: # st.session_state.json_data = None # if 'api_response' not in st.session_state: # st.session_state.api_response = None # # Sidebar configuration # with st.sidebar: # st.markdown("## API Configuration") # api_token = st.text_input("API Token", value=st.session_state.api_token, type="password") # if api_token: # st.session_state.api_token = api_token # st.markdown(""" # ## About # This dashboard provides analysis of energy data through various services # including NILM analysis, consumption and production forecasting. # """) # # Main page content # st.title("Energy Data Analysis Dashboard") # # Welcome message and service descriptions # st.markdown(""" # Welcome to the Energy Data Analysis Dashboard! This platform provides comprehensive tools for analyzing energy consumption and production data. # ### Available Services # You can access the following services through the navigation menu on the left: # #### 1. Energy Consumption Forecasting # - **Short Term**: Predict energy consumption patterns in the near future # - **Long Term**: Generate long-range consumption forecasts # #### 2. Energy Production Analysis # - **Short Term Production**: Forecast PV panel energy production # - **NILM Analysis**: Non-intrusive load monitoring for detailed consumption breakdown # #### 3. Advanced Analytics # - **Anomaly Detection**: Identify unusual patterns in energy consumption # ### Getting Started # 1. Select a service from the navigation menu on the left # 2. Upload your energy data file in JSON format # 3. Configure your API token if needed # 4. Run the analysis and explore the results # Each service page provides specific visualizations and analytics tailored to your needs. # """) # # Add version info and additional resources in an expander # with st.expander("Additional Information"): # st.markdown(""" # ### Usage Tips # - Ensure your data is in the correct JSON format # - Keep your API token secure # - Use the visualization tools to explore your data # - Export results for further analysis # ### Support # For technical support or questions about the services, please contact your system administrator. # """) # # Footer # st.markdown(""" # --- # Made with ❤️ by tLINKS Foundation # """) import streamlit as st import pandas as pd import pickle # Load Model model = pickle.load(open('logreg_model.pkl', 'rb')) st.title('Iris Variety Prediction') # Form with st.form(key='form_parameters'): sepal_length = st.slider('Sepal Length', 4.0, 8.0, 4.0) sepal_width = st.slider('Sepal Width', 2.0, 4.5, 2.0) petal_length = st.slider('Petal Length', 1.0, 7.0, 1.0) petal_width = st.slider('Petal Width', 0.1, 2.5, 0.1) st.markdown('---') submitted = st.form_submit_button('Predict') # Data Inference data_inf = { 'sepal.length': sepal_length, 'sepal.width': sepal_width, 'petal.length': petal_length, 'petal.width': petal_width } data_inf = pd.DataFrame([data_inf]) if submitted: # Predict using Logistic Regression y_pred_inf = model.predict(data_inf) st.write('## Iris Variety = '+ str(y_pred_inf))