lihuigu's picture
update structure
cee6a24
raw
history blame contribute delete
7.42 kB
import numpy as np
import pandas as pd
import textstat
import spacy
from collections import Counter
from itertools import groupby
nlp = spacy.load("en_core_web_sm")
PRESENT_TENSE_VERB_LIST = ["VB", "VBP", "VBZ", "VBG"]
VERB_LIST = ["VB", "VBP", "VBZ", "VBG", "VBN", "VBD"]
NOUN_LIST = ["NNP", "NNPS"]
SECTIONS_MAPS = {
"Authors": "Authors",
"AUTHORS": "AUTHORS",
"Abstract": "Abstract",
"ABSTRACT": "Abstract",
"Date": "Date",
"DATE": "DATE",
"INTRODUCTION": "Introduction",
"MATERIALS AND METHODS": "Methods",
"Materials and methods": "Methods",
"METHODS": "Methods",
"RESULTS": "Results",
"CONCLUSIONS": "Conclusions",
"CONCLUSIONS AND FUTURE APPLICATIONS": "Conclusions",
"DISCUSSION": "Discussion",
"ACKNOWLEDGMENTS": "Acknowledgement",
"TABLES": "Tables",
"Tabnles": "Tables",
"DISCLOSURE": "Disclosure",
"CONFLICT OF INTEREST": "Disclosure",
"Acknowledgement": "Acknowledgements",
}
def compute_readability_stats(text):
"""
Compute reading statistics of the given text
Reference: https://github.com/shivam5992/textstat
Parameters
==========
text: str, input section or abstract text
"""
try:
readability_dict = {
"flesch_reading_ease": textstat.flesch_reading_ease(text),
"smog": textstat.smog_index(text),
"flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
"coleman_liau_index": textstat.coleman_liau_index(text),
"automated_readability_index": textstat.automated_readability_index(text),
"dale_chall": textstat.dale_chall_readability_score(text),
"difficult_words": textstat.difficult_words(text),
"linsear_write": textstat.linsear_write_formula(text),
"gunning_fog": textstat.gunning_fog(text),
"text_standard": textstat.text_standard(text),
"n_syllable": textstat.syllable_count(text),
"avg_letter_per_word": textstat.avg_letter_per_word(text),
"avg_sentence_length": textstat.avg_sentence_length(text),
}
except:
readability_dict = {
"flesch_reading_ease": None,
"smog": None,
"flesch_kincaid_grade": None,
"coleman_liau_index": None,
"automated_readability_index": None,
"dale_chall": None,
"difficult_words": None,
"linsear_write": None,
"gunning_fog": None,
"text_standard": None,
"n_syllable": None,
"avg_letter_per_word": None,
"avg_sentence_length": None,
}
return readability_dict
def compute_text_stats(text):
"""
Compute part of speech features from a given spacy wrapper of text
Parameters
==========
text: spacy.tokens.doc.Doc, spacy wrapper of the section or abstract text
Output
======
text_stat: dict, part of speech and text features extracted from the given text
"""
try:
pos = dict(Counter([token.pos_ for token in text]))
pos_tag = dict(
Counter([token.tag_ for token in text])
) # detailed part-of-speech
n_present_verb = sum(
[v for k, v in pos_tag.items() if k in PRESENT_TENSE_VERB_LIST]
)
n_verb = sum([v for k, v in pos_tag.items() if k in VERB_LIST])
word_shape = dict(Counter([token.shape_ for token in text])) # word shape
n_word_per_sents = [len([token for token in sent]) for sent in text.sents]
n_digits = sum([token.is_digit or token.like_num for token in text])
n_word = sum(n_word_per_sents)
n_sents = len(n_word_per_sents)
text_stats_dict = {
"pos": pos,
"pos_tag": pos_tag,
"word_shape": word_shape,
"n_word": n_word,
"n_sents": n_sents,
"n_present_verb": n_present_verb,
"n_verb": n_verb,
"n_digits": n_digits,
"percent_digits": n_digits / n_word,
"n_word_per_sents": n_word_per_sents,
"avg_word_per_sents": np.mean(n_word_per_sents),
}
except:
text_stats_dict = {
"pos": None,
"pos_tag": None,
"word_shape": None,
"n_word": None,
"n_sents": None,
"n_present_verb": None,
"n_verb": None,
"n_digits": None,
"percent_digits": None,
"n_word_per_sents": None,
"avg_word_per_sents": None,
}
return text_stats_dict
def compute_journal_features(article):
"""
Parse features about journal references from a given dictionary of parsed article e.g.
number of reference made, number of unique journal refered, minimum year of references,
maximum year of references, ...
Parameters
==========
article: dict, article dictionary parsed from GROBID and converted to dictionary
see ``pdf/parse_pdf.py`` for the detail of the output dictionary
Output
======
reference_dict: dict, dictionary of
"""
try:
n_reference = len(article["references"])
n_unique_journals = len(
pd.unique([a["journal"] for a in article["references"]])
)
reference_years = []
for reference in article["references"]:
year = reference["year"]
if year.isdigit():
# filter outliers
if int(year) in range(1800, 2100):
reference_years.append(int(year))
avg_ref_year = np.mean(reference_years)
median_ref_year = np.median(reference_years)
min_ref_year = np.min(reference_years)
max_ref_year = np.max(reference_years)
journal_features_dict = {
"n_reference": n_reference,
"n_unique_journals": n_unique_journals,
"avg_ref_year": avg_ref_year,
"median_ref_year": median_ref_year,
"min_ref_year": min_ref_year,
"max_ref_year": max_ref_year,
}
except:
journal_features_dict = {
"n_reference": None,
"n_unique_journals": None,
"avg_ref_year": None,
"median_ref_year": None,
"min_ref_year": None,
"max_ref_year": None,
}
return journal_features_dict
def merge_section_list(section_list, section_maps=SECTIONS_MAPS, section_start=""):
"""
Merge a list of sections into a normalized list of sections,
you can get the list of sections from parsed article JSON in ``parse_pdf.py`` e.g.
>> section_list = [s['heading'] for s in article_json['sections']]
>> section_list_merged = merge_section_list(section_list)
Parameters
==========
section_list: list, list of sections
Output
======
section_list_merged: list, sections
"""
sect_map = section_start # text for starting section e.g. ``Introduction``
section_list_merged = []
for section in section_list:
if any([(s.lower() in section.lower()) for s in section_maps.keys()]):
sect = [s for s in section_maps.keys() if s.lower() in section.lower()][0]
sect_map = section_maps.get(sect, "") #
section_list_merged.append(sect_map)
else:
section_list_merged.append(sect_map)
return section_list_merged