Litton7 / app.py
lichih's picture
Update app.py
c860e5a verified
raw
history blame
5.34 kB
import gradio as gr
from transformers import pipeline
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
def predict(image):
predictions = pipeline(image)
return {p["label"]: p["score"] for p in predictions}
gr.Interface(
predict,
inputs=gr.Image(label="Upload hot dog candidate", type="filepath"),
outputs=gr.Label(num_top_classes=2),
title="Hot Dog? Or Not?",
allow_flagging="manual"
).launch()
# import matplotlib.pyplot as plt
# import torch
# from PIL import Image
# from torchvision import transforms
# import torch.nn.functional as F
# from typing import Literal, Any
# import gradio as gr
# import spaces
# from io import BytesIO
# class Classifier:
# LABELS = [
# "Panoramic",
# "Feature",
# "Detail",
# "Enclosed",
# "Focal",
# "Ephemeral",
# "Canopied",
# ]
# @spaces.GPU(duration=60)
# def __init__(
# self, model_path="Litton-7type-visual-landscape-model.pth", device="cuda:0"
# ):
# self.device = device
# self.model = torch.load(
# model_path, map_location=self.device, weights_only=False
# )
# if hasattr(self.model, "module"):
# self.model = self.model.module
# self.model.eval()
# self.preprocess = transforms.Compose(
# [
# transforms.Resize(256),
# transforms.CenterCrop(224),
# transforms.ToTensor(),
# transforms.Normalize(
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
# ),
# ]
# )
# @spaces.GPU(duration=60)
# def predict(self, image: Image.Image) -> tuple[Literal["Failed", "Success"], Any]:
# image = image.convert("RGB")
# input_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
# with torch.no_grad():
# logits = self.model(input_tensor)
# probs = F.softmax(logits[:, :7], dim=1).cpu()
# return draw_bar_chart(
# {
# "class": self.LABELS,
# "probs": probs[0] * 100,
# }
# )
# def draw_bar_chart(data: dict[str, list[str | float]]):
# classes = data["class"]
# probabilities = data["probs"]
# plt.figure(figsize=(8, 6))
# plt.bar(classes, probabilities, color="skyblue")
# plt.xlabel("Class")
# plt.ylabel("Probability (%)")
# plt.title("Class Probabilities")
# for i, prob in enumerate(probabilities):
# plt.text(i, prob + 0.01, f"{prob:.2f}", ha="center", va="bottom")
# plt.tight_layout()
# return plt
# def get_layout():
# demo = gr.Interface(fn=Classifier().predict, inputs="image", outputs="plot")
# return demo
# css = """
# .main-title {
# font-size: 24px;
# font-weight: bold;
# text-align: center;
# margin-bottom: 20px;
# }
# .reference {
# text-align: center;
# font-size: 1.2em;
# color: #d1d5db;
# margin-bottom: 20px;
# }
# .reference a {
# color: #FB923C;
# text-decoration: none;
# }
# .reference a:hover {
# text-decoration: underline;
# color: #FB923C;
# }
# .title {
# border-bottom: 1px solid;
# }
# .footer {
# text-align: center;
# margin-top: 30px;
# padding-top: 20px;
# border-top: 1px solid #ddd;
# color: #d1d5db;
# font-size: 14px;
# }
# """
# theme = gr.themes.Base(
# primary_hue="orange",
# secondary_hue="orange",
# neutral_hue="gray",
# font=gr.themes.GoogleFont("Source Sans Pro"),
# ).set(
# background_fill_primary="*neutral_950", # 主背景色(深黑)
# button_primary_background_fill="*primary_500", # 按鈕顏色(橘色)
# body_text_color="*neutral_200", # 文字顏色(淺色)
# )
# # with gr.Blocks(css=css, theme=theme) as demo:
# with gr.Blocks() as demo:
# with gr.Column():
# gr.HTML(
# value=(
# '<div class="main-title">Litton7景觀分類模型</div>'
# '<div class="reference">引用資料:'
# '<a href="https://www.airitilibrary.com/Article/Detail/10125434-N202406210003-00003" target="_blank">'
# "何立智、李沁築、邱浩修(2024)。Litton7:Litton視覺景觀分類深度學習模型。戶外遊憩研究,37(2)"
# "</a>"
# "</div>"
# ),
# )
# with gr.Row(equal_height=True):
# image_input = gr.Image(label="上傳影像", type="pil")
# chart = gr.Image(label="分類結果")
# start_button = gr.Button("開始分類", variant="primary")
# gr.HTML(
# '<div class="footer">© 2024 LCL 版權所有<br>開發者:何立智、楊哲睿</div>',
# )
# start_button.click(
# fn=Classifier().predict,
# inputs=image_input,
# outputs=chart,
# )
# return demo
# if __name__ == "__main__":
# get_layout().launch()